4.6 Editorial Material

Polymer acceptors based on Y6 derivatives for all-polymer solar cells

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives

Ruijie Ma et al.

Summary: In this study, the morphology of the active layer in all-polymer solar cells was fine-tuned using solvent additive and polymer additive, resulting in an efficiency of 16.04%. Altering the shape of crystallites enhanced charge transport, reduced recombination, and suppressed energy loss, leading to improved device efficiency and stability.

AGGREGATE (2022)

Review Chemistry, Multidisciplinary

Polymerized Small-Molecule Acceptors for High-Performance All-Polymer Solar Cells

Zhi-Guo Zhang et al.

Summary: All-polymer solar cells have attracted significant research interest due to their good film formation, stable morphology, and mechanical flexibility. The strategy of polymerizing small-molecule acceptors to construct new-generation polymer acceptors has significantly increased the power conversion efficiency, but current challenges and future prospects still need to be addressed.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Highly Efficient and Stable All-Polymer Solar Cells Enabled by Near-Infrared Isomerized Polymer Acceptors

Tao Wang et al.

Summary: This study investigated the effects of regioisomerized structures on the molecular and photovoltaic properties of near-infrared polymer acceptors (P(A)s) constructed from n-type fused-ring electron acceptors (FREAs). The results showed that the PYTT-2 system had the best photovoltaic performance and stability among the three isomeric FREA-based P(A)s.

CHEMISTRY OF MATERIALS (2021)

Article Chemistry, Physical

Efficient, Thermally Stable, and Mechanically Robust All-Polymer Solar Cells Consisting of the Same Benzodithiophene Unit-Based Polymer Acceptor and Donor with High Molecular Compatibility

Jin-Woo Lee et al.

Summary: Researchers have developed a series of polymer acceptors based on non-fullerene small molecule acceptors, which show enhanced compatibility and performance when blended with high-performance polymer donors.

ADVANCED ENERGY MATERIALS (2021)

Article Multidisciplinary Sciences

Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6:Y6-1O as acceptor

Xiaoling Ma et al.

Summary: A series of ternary organic photovoltaics have been successfully fabricated by incorporating Y6-1O, which leads to an increase in open-circuit voltage and power conversion efficiency of the devices. By finely adjusting the content of Y6-1O, the optimal device with 30% Y6-1O achieves a conversion efficiency of 17.91%, with significantly improved short-circuit current density and fill factor.

NATIONAL SCIENCE REVIEW (2021)

Article Chemistry, Multidisciplinary

Regio-Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for All-Polymer Solar Cells with 15.2 % Efficiency

Han Yu et al.

Summary: The two regio-regular polymer acceptors synthesized in this study show significant performance difference, with PYF-T-o exhibiting better photon absorption and more ordered inter-chain packing, resulting in higher power conversion efficiency.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor

Huiting Fu et al.

Summary: A new class of narrow-bandgap polymer acceptors, the PZT series, was developed to address challenges in all-polymer solar cells, resulting in improved performance due to red-shifted optical absorption and up-shifted energy levels. The regioregular PZT-gamma was specifically designed to avoid isomer formation during polymerization, leading to enhanced efficiency, short-circuit current density, and energy loss in all-PSCs.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Physical

High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having π-Extended Units with Broad Near-IR Absorption

Ning Su et al.

Summary: Two new poly-small-molecule acceptors, PYN-BDT and PYN-BDTF, with p-extended naphthalene rings, demonstrated broad optical cross-section macromolecular absorbers in all-polymer solar cells, leading to enhanced power conversion efficiencies. The blend morphology, GIWAXS, charge transport, exciton and carrier dynamics, and impedance-based analysis show that extending individual polymer acceptor blocks represents an efficient strategy to achieve high-performance cells with enhanced metrics.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors

Rui Sun et al.

Summary: The study focuses on developing high-performance all-polymer solar cells by designing a novel polymer acceptor PY2F-T and enhancing efficiency through ternary blend with PYT in the PM6: PY2F-T host system. This approach significantly improves power conversion efficiency and stability, marking a promising future for the application of all-PSCs.
Article Chemistry, Multidisciplinary

High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor

Qunping Fan et al.

Summary: A novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap was developed and showed improved performance in all-polymer solar cells with a PCE of 12.31% and reduced energy loss. This study demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-polymer solar cells.

SCIENCE CHINA-CHEMISTRY (2021)

Article Chemistry, Multidisciplinary

Constructing a new polymer acceptor enabled non-halogenated solvent-processed all-polymer solar cell with an efficiency of 13.8%

Chunguang Zhu et al.

Summary: A new polymer acceptor, PS1, was developed by linking a non-fullerene acceptor building block with dithienothiophen[3,2-b]pyrrolo-benzotriazole capped with 3-(dicyanomethylidene)-indan-1-one via a thiophene spacer, enabling it to be easily dissolved in non-chlorinated solvents. When using 2-methyltetrahydrofuran as the processing solvent, the all-PSC composed of PS1 and a polymer donor PTzBI-oF achieved a remarkably high power conversion efficiency of 13.8% in the light-harvesting layer.

CHEMICAL COMMUNICATIONS (2021)

Article Physics, Condensed Matter

A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency

Jianqiang Qin et al.

JOURNAL OF SEMICONDUCTORS (2021)

Article Chemistry, Physical

Organoboron Polymer for 10% Efficiency All-Polymer Solar Cells

Ruyan Zhao et al.

CHEMISTRY OF MATERIALS (2020)

Article Chemistry, Multidisciplinary

High-Performance All-Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy

Jiaqi Du et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Article Chemistry, Multidisciplinary

A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells

Francis Lin et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Nanoscience & Nanotechnology

Non-fullerene acceptors for organic solar cells

Cenqi Yan et al.

NATURE REVIEWS MATERIALS (2018)

Article Chemistry, Multidisciplinary

Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells

Zhi-Guo Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Article Chemistry, Multidisciplinary

High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing

Zhaojun Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)