4.7 Article

COVID-19 anomaly detection and classification method based on supervised machine learning of chest X-ray images

期刊

RESULTS IN PHYSICS
卷 31, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.rinp.2021.105045

关键词

COVID-19 diagnosis; X-ray image; Local binary pattern; Haralick; Machine learning; K-nearest neighbor; Support vector machine

资金

  1. Department of Computer Science, Mustansiriyah University
  2. Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia
  3. Department of Computer Science, University of Diyala, Diyala, Iraq

向作者/读者索取更多资源

This study proposes a method for early detection and classification of COVID-19 through image processing using X-ray images. Different combinations of feature extraction operators and classifiers were tested, with the LBP-KNN model proving to be the most effective.
The term COVID-19 is an abbreviation of Coronavirus 2019, which is considered a global pandemic that threatens the lives of millions of people. Early detection of the disease offers ample opportunity of recovery and prevention of spreading. This paper proposes a method for classification and early detection of COVID-19 through image processing using X-ray images. A set of procedures are applied, including preprocessing (image noise removal, image thresholding, and morphological operation), Region of Interest (ROI) detection and segmentation, feature extraction, (Local binary pattern (LBP), Histogram of Gradient (HOG), and Haralick texture features) and classification (K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)). The combinations of the feature extraction operators and classifiers results in six models, namely LBP-KNN, HOG-KNN, Haralick-KNN, LBP-SVM, HOG-SVM, and Haralick-SVM. The six models are tested based on test samples of 5,000 images with the percentage of training of 5-folds cross-validation. The evaluation results show high diagnosis accuracy from 89.2% up to 98.66%. The LBP-KNN model outperforms the other models in which it achieves an average accuracy of 98.66%, a sensitivity of 97.76%, specificity of 100%, and precision of 100%. The proposed method for early detection and classification of COVID-19 through image processing using X-ray images is proven to be usable in which it provides an end-to-end structure without the need for manual feature extraction and manual selection methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据