4.7 Article

Boron-doping-induced defect engineering enables high performance of a graphene cathode for aluminum batteries

期刊

INORGANIC CHEMISTRY FRONTIERS
卷 9, 期 5, 页码 925-934

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1qi01474a

关键词

-

资金

  1. Shandong University

向作者/读者索取更多资源

The defect engineering of boron-doped reduced graphene oxide is applied to the cathode material for rechargeable aluminum batteries, improving capacity and reaction kinetics. The substitution of boron for carbon enhances electronic conductivity, reduces diffusion barrier, and increases AlCl4- adsorption ability. The cathode based on boron-doped reduced graphene oxide demonstrates high Al-storage capacity and outstanding long-term stability.
Rechargeable aluminum batteries (RABs) have received significant interest due to the low cost, high volumetric capacity, and low flammability of aluminum. However, the paucity of reliable cathode materials poses substantial obstacles to the in-depth growth of RABs. Herein, defect engineering in virtue of boron doping is applied to the reduced graphene oxide as the cathode for RABs, endowing graphene with additional defects that improve the capacity and reaction kinetics of the electrode. Moreover, density functional theory (DFT) simulations confirm that the increased electronic conductivity, depressed diffusion barrier, and enhanced AlCl4- adsorption ability may be ascribed to the substitution of boron for carbon. In addition, the B-doped reduced graphene oxide (BG) operates by the intercalation/de-intercalation of AlCl4- upon the charge/discharge process. With these superior qualities, the cathode based on BG displays a high Al-storage capacity (259 mA h g(-1) at 0.5 A g(-1)) and outstanding long-term stability (135 mA h g(-1) at 5 A g(-1) over 10 000 cycles) with a capacity decay of merely 0.0004% per cycle, one of the best performances among the state-of-the-art cathodes for RABs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据