4.6 Article

Anti-inflammatory and anti-COVID-19 effect of a novel polyherbal formulation (Imusil) via modulating oxidative stress, inflammatory mediators and cytokine storm

期刊

INFLAMMOPHARMACOLOGY
卷 30, 期 1, 页码 173-184

出版社

SPRINGER BASEL AG
DOI: 10.1007/s10787-021-00911-x

关键词

Inflammation; Imusil; Oxidative stress; NOX-2; Pro-inflammatory cytokines; COVID-19

向作者/读者索取更多资源

The study aims to demonstrate the anti-viral and anti-inflammatory effects of a novel polyherbal formulation called Imusil. Chemical characterizations of Imusil were conducted, and the results showed that Imusil significantly inhibited the replication of SARS-CoV-2 and reduced the production of inflammatory mediators.
In the current scenario, most countries are affected by COVID-19, a pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has a massive impact on human health. Previous studies showed that some traditionally used medicinal herbs and their combinations showed synergistic anti-viral and anti-inflammatory activity against SARS-CoV-2 type infections. Therefore, the goal of this study is to demonstrate the anti-viral and anti-inflammatory effects of a novel polyherbal formulation, hereinafter referred to as Imusil, on Vero E6 cell lines and Raw 264.7 murine macrophage cells respectively. The Imusil was subjected to identify its chemical characterisations such as UV-Visible spectrum profile, Fourier transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectroscopic (GC-MS) analysis. FT-IR analysis of Imusil peak values with various functional compounds such as alcohol, esters, aliphatic and carboxylic acids. GC-MS analysis of compounds with totally 87 compounds major chemical compounds were identified, such as 3-(Octanoyloxy) propane-1,2-diyl bis(decanoate), Succinic acid, 2-methylhex-3-yl 2,2,2-trifluoroethyl ester, Neophytadiene, 3,5,9-Trioxa-4-phosphaheneicosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxododecyl)oxy]-, hydroxide, inner salt, 4-oxide, (R)-. The anti-viral activity of Imusil against SARS-CoV-2 was assessed using plaque reduction assay and anti-inflammatory study was conducted on lipopolysaccharide (LPS)-induced RAW 264.7 cells. The results obtained from the study reveal that Imusil significantly inhibited SARS-CoV-2 replication in Vero E6 cells and the production of inflammatory mediator's cyclooxygenase-2 and pro-inflammatory cytokines like tumour necrosis factor-alpha and interleukin- 6 were significantly reduced, along with thwarting the significant oxidative stress by preventing the expression of NOX-2 thereby inhibiting the reactive oxygen species formation. Hence, considering the current study as a novel strategy for mediating the COVID-19 associated aliments, inceptive scientific evidence of Imusil promises its potential therapeutic implications against COVID-19 and inflammatory conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据