4.8 Article

HSC70 Inhibits Spring Viremia of Carp Virus Replication by Inducing MARCH8-Mediated Lysosomal Degradation of G Protein

期刊

FRONTIERS IN IMMUNOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2021.724403

关键词

HSC70; SVCV G protein; MARCH8; complex; degradation; viral replication; ubiquitination

资金

  1. Natural Science Foundation of China [32173018, 31972834]
  2. National Key Research and Development Program of China [2018YFD0900505]

向作者/读者索取更多资源

The study identified HSC70 as an interaction partner of SVCV G protein, inhibiting viral replication by promoting its lysosomal degradation. Furthermore, MARCH8 was found to be critical in ubiquitinating and degrading SVCV G protein, with HSC70 participating in this process by forming a multicomponent complex.
As a fierce pathogen, spring viremia of carp virus (SVCV) can cause high mortality in the common carp, and its glycoprotein (G protein) is a component of the viral structure on the surface of virion, which is crucial in viral life cycle. This report adopted tandem affinity purification (TAP), mass spectrometry analysis (LC-MS/MS), immunoprecipitation, and confocal microscopy assays to identify Heat shock cognate protein 70 (HSC70) as an interaction partner of SVCV G protein. It was found that HSC70 overexpression dramatically inhibited SVCV replication, whereas its loss of functions elicited opposing effects on SVCV replication. Mechanistic studies indicate that HSC70 induces lysosomal degradation of ubiquitinated-SVCV G protein. This study further demonstrates that Membrane-associated RING-CH 8 (MARCH8), an E3 ubiquitin ligase, is critical for SVCV G protein ubiquitylation and leads to its lysosomal degradation. Furthermore, the MARCH8 mediated ubiquitylation of SVCV G protein required the participation of HSC70 through forming a multicomponent complex. Taken together, these results demonstrate that HSC70 serves as a scaffold for MARCH8 and SVCV G, which leads to the ubiquitylation and degradation of SVCV G protein and thus inhibits viral replication. These findings have established a novel host defense mechanism against SVCV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据