4.8 Article

Development of Exhausted Memory Monocytes and Underlying Mechanisms

期刊

FRONTIERS IN IMMUNOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2021.778830

关键词

monocyte memory; exhaustion; pathogenic inflammation; CD38; TRAM

资金

  1. National Institutes of Health [R01AI136386]

向作者/读者索取更多资源

This study investigated the generation of exhausted monocytes in murine models through prolonged challenges with high dose LPS, leading to skewing of monocytes towards classically exhausted Ly6C(hi) population and depletion of non-classical Ly6C(lo) population. Findings revealed CD38 as an inflammatory mediator and STAT1 as a crucial factor in the mechanism of monocyte exhaustion.
Pathogenic inflammation and immuno-suppression are cardinal features of exhausted monocytes increasingly recognized in septic patients and murine models of sepsis. However, underlying mechanisms responsible for the generation of exhausted monocytes have not been addressed. In this report, we examined the generation of exhausted primary murine monocytes through prolonged and repetitive challenges with high dose bacterial endotoxin lipopolysaccharide (LPS). We demonstrated that repetitive LPS challenges skew monocytes into the classically exhausted Ly6C(hi) population, and deplete the homeostatic non-classical Ly6C(lo) population, reminiscent of monocyte exhaustion in septic patients. scRNAseq analyses confirmed the expansion of Ly6C(hi) monocyte cluster, with elevation of pathogenic inflammatory genes previously observed in human septic patients. Furthermore, we identified CD38 as an inflammatory mediator of exhausted monocytes, associated with a drastic depletion of cellular NAD(+); elevation of ROS; and compromise of mitochondria respiration, representative of septic monocytes. Mechanistically, we revealed that STAT1 is robustly elevated and sustained in LPS-exhausted monocytes, dependent upon the TRAM adaptor of the TLR4 pathway. TRAM deficient monocytes are largely resistant to LPS-mediated exhaustion, and retain the non-classical homeostatic features. Together, our current study addresses an important yet less-examined area of monocyte exhaustion, by providing phenotypic and mechanistic insights regarding the generation of exhausted monocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据