4.6 Article

A numerical study of the distribution of chemotherapeutic drug carmustine in brain glioblastoma

期刊

DRUG DELIVERY AND TRANSLATIONAL RESEARCH
卷 12, 期 7, 页码 1697-1710

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13346-021-01068-4

关键词

Numerical model; Drug release; Convection; Brain tumor; Gliadel Wafer; AFEPack

资金

  1. Macau FDCT Research Grant [FDCT/0029/2018/A1]
  2. University of Macau Research Grant [MYRG2019-00041-ICMS]

向作者/读者索取更多资源

This study simulated the drug concentration in brain tumors after drug release from Gliadel wafers using numerical methods. The numerical results demonstrated the reliability of the method, with finite element method showing steady state pressure in normal tissue and finite difference method displaying changes in drug concentration at six different time points.
To cure the illness in the brain glioblastoma, the Gliadel wafer, as the first FDA-approved chemotherapy, was available on the market since 1997. Due to the complex studies in vivo, more and more researchers have paid their attention to investigate the dynamic process in the brain by numerical methods. This study aimed to simulate the drug concentration in the cavity after drug releases from Gliadel wafers into the brain tumor by a two-dimensional simulation. The government equations, the parameters, and corresponding initial and boundary conditions are specified. Then the models are discretized and solved by finite element method (FEM) and finite difference method (FDM) based on C++ library Adaptive Finite Element Package (AFEPack) and MATLAB, respectively. First of all, the numerical convergence of the method is studied by numerical results represented in several successively refined meshes, which shows the reliability of our method. In the results from FEM, a steady state of the pressure in the normal tissue can be simulated. As for FDM, the changes of drug concentration are displayed at six different times. The numerical method in this paper is an effective tool for the numerical study on drug release from polymers. Additionally, convection is a critical factor in drug transportation. Moreover, the simulation approach can be used as the guild for remedy optimization and dynamic analysis of other drugs (paclitaxel) for tumor treatment in the clinic. This mathematical model has wide applications about drug release in multiple dosage forms, such as long sustained release microspheres, oral extended release hydrophilic matrix tablets, hydrogel, and sustained release topical rings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据