4.6 Article

Real Space Quantum Cluster Formulation for the Typical Medium Theory of Anderson Localization

期刊

CRYSTALS
卷 11, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/cryst11111282

关键词

metal insulator transition; Anderson localization; random disorder; typical medium theory; dynamical mean field theory; coherent potential approximation; dynamical cluster approximation; cellular dynamical mean field theory; cluster mean field theory

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0017861]
  2. NSF [DMR-1944974, DMR-1728457, OAC-1931445, OAC-1931367]
  3. Deutsche Forschungsgemeinschaft [TRR80, 107745057, DE-AC05-00OR22725]
  4. U.S. Department of Energy
  5. Extreme Science and Engineering Discovery Environment (XSEDE) [DMR130036]
  6. U.S. Department of Energy (DOE) [DE-SC0017861] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

A real space cluster extension method was developed to study Anderson localization, successfully capturing the phenomena in all disorder regimes. The approach accurately obtained the critical disorder strength for 3D Anderson localization and systematically recovered the re-entrance behavior of the mobility edge. This methodology offers potential to study Anderson localization at surfaces within quantum embedding theory, allowing for the exploration of the interplay between topology and Anderson localization from first principles.
We develop a real space cluster extension of the typical medium theory (cluster-TMT) to study Anderson localization. By construction, the cluster-TMT approach is formally equivalent to the real space cluster extension of the dynamical mean field theory. Applying the developed method to the 3D Anderson model with a box disorder distribution, we demonstrate that cluster-TMT successfully captures the localization phenomena in all disorder regimes. As a function of the cluster size, our method obtains the correct critical disorder strength for the Anderson localization in 3D, and systematically recovers the re-entrance behavior of the mobility edge. From a general perspective, our developed methodology offers the potential to study Anderson localization at surfaces within quantum embedding theory. This opens the door to studying the interplay between topology and Anderson localization from first principles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据