4.7 Article

Long intergenic non-coding RNA-00917 regulates the proliferation, inflammation, and pyroptosis of nucleus pulposus cells via targeting miR-149-5p/NOD-like receptor protein 1 axis

期刊

BIOENGINEERED
卷 13, 期 3, 页码 6036-6047

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/21655979.2022.2043100

关键词

Intervertebral disc degeneration; LINC00917; pyroptosis; inflammation

资金

  1. PLA Military Llogistics Research Foundation [BKJ20J004]
  2. Beijing Municipal Science and Technology Commission [Z161100000116057]

向作者/读者索取更多资源

Our study reveals the crucial role of LINC00917 in intervertebral disc degeneration (IDD), where it restores nucleus pulposus cell (NPC) function and inhibits IDD progression through modulating the miR-149-5p/NLRP1 axis.
Intervertebral disc degeneration (IDD) has caused great trouble in people's lives. Dysregulated long noncoding RNAs (lncRNAs) are closely linked to IDD progression. Our study aims to analyze the role of LINC00917 in the progression of IDD. Forty nucleus pulposus (NP) IDD tissues and 40 NP tissues of intervertebral discs without apparent degeneration were collected. TBHP was used to induce IDD. Cell proliferation was measured using the MTT and EdU assays. Pyroptosis was detected using flow cytometry. RT-qPCR and Western blot assays were performed to determine mRNA, miRNA, and protein expression. Dual-luciferase reporter and RNA pull-down assays were performed to verify the relationship between LINC00917 or NLRP1 and miR-149-5p. LINC00917 expression was enhanced in TBHP-treated nucleus pulposus cells (NPCs). The knockdown of LINC00917 promoted proliferation and inhibited cytotoxicity, inflammatory response, and pyroptosis of NPCs. LINC00917 functions as a sponge for miR-149-5p. Having silenced miR-149-5p, the effects of LINC00917 knockdown on NPC proliferation and inflammation-induced pyroptosis were alleviated. NLRP1 overexpression induced cellular dysfunction and pyroptosis of NPCs. LINC00917 knockdown restored NPC cellular functions and inhibited IDD progression by modulating the miR-149-5p/NLRP1 axis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据