4.6 Article

Comparison of Structure and Magnetic Properties of Ni/C Composites Synthesized from Wheat Straw by Different Methods

期刊

APPLIED SCIENCES-BASEL
卷 11, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/app112110031

关键词

nanostructured composite; nickel chloride; porous structure; adsorption properties; magnetic hysteresis

向作者/读者索取更多资源

Ni/C nanostructured composites were successfully synthesized using wheat straw as a natural raw material. The composites contained metallic nickel, with magnetic measurements indicating nickel was in nanoparticle state. This novel material could potentially be utilized for energy storage applications or as magnetically controlled adsorbents.
Synthesis of Ni/C nanostructured composites based on a natural raw material, i.e., wheat straw, is carried out in this work. The synthesis is performed by one- and two-stage methods using NiCl2 as the activating agent. The X-ray diffraction and EDS analyses reveal the presence of metallic nickel in the structure of the composites, whereas magnetic measurements showed that nickel was contained in the porous carbon matrix in the nanoparticle state. For nanocomposites synthesized by the one-stage method, the largest contribution to the formation of the porous structure might be attributed to pores with radii from 5 to 30 nm; for a nanocomposite synthesized in two stages, the pore distribution function exhibits a narrow isolated peak with a maximum of around 2.6 nm. Based on the obtained magnetic data, the coercive force, specific saturation magnetization and nickel content in nanocomposites are calculated. For the measured values of the coercive force, the average size of magnetic moment carriers is determined to be ~100 nm for the two-stage synthesis nanocomposite and ~100 & DIVIDE; 110 nm for the one-stage synthesis nanocomposites. The developed Ni/C nanocomposites might be used as a cheap material for energy storage applications or as magnetically controlled adsorbents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据