4.6 Article

Pulsed Nanoelectrospray Ionization Boosts Ion Signal in Whole Protein Mass Spectrometry

期刊

APPLIED SCIENCES-BASEL
卷 11, 期 22, 页码 -

出版社

MDPI
DOI: 10.3390/app112210883

关键词

electrospray ionisation; nanoelectrospray; proteins; alternating current; top-down

资金

  1. Australian Research Council [DP190103298, DE190100986, FT200100798]
  2. Australian Research Council [DE190100986, FT200100798] Funding Source: Australian Research Council

向作者/读者索取更多资源

Pulsed nanoESI-MS using nanoscale emitters can improve the performance of intact protein detection, with increased ion abundances and decreased noise compared to conventional methods. Optimal repetition rates significantly enhance the signal levels for proteins.
Electrospray ionisation (ESI) is renowned for its ability to ionise intact proteins for sensitive detection by mass spectrometry (MS). However, the use of a conventional direct current ESI voltage can result in the formation of relatively large initial droplet sizes, which can limit efficient ion desolvation and sensitivity. Here, pulsed nanoESI (nESI) MS using nanoscale emitters with inner diameters of ~250 nm is reported. In this approach, the nESI voltage is rapidly pulsed from 0 to ~1.5 kV with sub-nanosecond rise times, duty cycles from 10 to 90%, and repetition rates of 10 to 350 kHz. Using pulsed nESI, the performance of MS for the detection of intact proteins can be improved in terms of increased ion abundances and decreased noise. The absolute ion abundances and signal-to-noise levels of protonated ubiquitin, cytochrome C, myoglobin, and carbonic anhydrase II formed from standard denaturing solutions can be increased by up to 82% and 154% using an optimal repetition rate of ~200 kHz compared to conventional nESI-MS. Applying pulsed nESI-MS to a mixture of four proteins resulted in the signal for each protein increasing by up to 184% compared to the more conventional nESI-MS. For smaller ions (& LE;1032 m/z), the signal can also be increased by the use of high repetition rates (200-250 kHz), which is consistent with the enhanced performance depending more on general factors associated with the ESI process (e.g., smaller initial droplet sizes and reduced Coulombic repulsion in the spray plume) rather than analyte-specific effects (e.g., electrophoretic mobility). The enhanced sensitivity of pulsed nESI is anticipated to be beneficial for many different types of tandem mass spectrometry measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据