4.6 Article

Study on Vertically Distributed Aerosol Optical Characteristics over Saudi Arabia Using CALIPSO Satellite Data

期刊

APPLIED SCIENCES-BASEL
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/app12020603

关键词

aerosols; CALIPSO; Saudi Arabia; aerosol layers; AOD

向作者/读者索取更多资源

The optical characteristics of vertically distributed aerosols over Saudi Arabia were studied using CALIPSO data from 2007 to 2019. The study found that the aerosol optical depth (AOD) was highest in the eastern region, driven by the presence of a desert. AOD was higher in spring and summer and during daytime. The aerosol layers and volume depolarization ratio varied across different regions.
The optical characteristics of vertically distributed aerosols over Saudi Arabia were investigated using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data from 2007 to 2019. The study region was divided into three parts (Region I: Tabuk, Makkah, Al Madinah, Asir, Al Bahah, Jizan, Riyadh, Mecca, Medina, the eastern region, Kassim, Hale, Asir, Baha, Tabuk, the northern border region, Jizan, Najilan, and Jufu. Region II: Ar, Al, Ha, Al, and Najran. Region III Al Hudud ash Shamaliyah and Ash Sharqiyah) to understand regional aerosol characteristics by performing interannual and seasonal analysis for nine aerosol types during the day and nighttime. We found that the aerosol optical depth (AOD) estimates were the highest over eastern Saudi Arabia (region III) and were seemingly driven by the presence of an expansive desert in the region. As anticipated, the AOD observations were substantially higher in spring and summer than in autumn and winter owing to the frequent occurrence of dust events during the former. Daytime observations exhibited higher AOD values than those at nighttime, which might be related to higher daytime anthropogenic activities. The estimates of the base height of the lowest aerosol layer (HB1) and the top altitude of the highest aerosol layer (TAH) were altered depending on the topography (the higher the altitude, the higher the annual mean value of HB1 and TAH). The aerosol layers (N) were relatively abundant over region III, seemingly due to the relatively stronger atmospheric convection over this region. The volume depolarization ratio of the lowest aerosol layer (VDR1) was considerable during the night due to deposition at nighttime, and VDR1 was relatively substantial in spring and summer. The color ratio of the lowest aerosol layer (CR1) estimates over regions II and III was higher at night. We report a weak positive correlation between the thickness of the lowest aerosol layer (HTH1) and the AOD of the lowest aerosol layer (AOD(1)) in the three regions, a strong positive correlation between TAH and N, and a negative correlation between the AOD proportion of the lowest aerosol layer (PAOD(1)) and N in Saudi Arabia. In this paper, the optical and physical properties of aerosols in Saudi Arabia have been studied for 13 years. Our results could provide references for researchers and the government, and relevant departments with data support on the aerosol layer to help control air pollution in Saudi Arabia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据