4.8 Article

Epitaxial III-V/Si Vertical Heterostructures with Hybrid 2D-Semimetal/Semiconductor Ambipolar and Photoactive Properties

期刊

ADVANCED SCIENCE
卷 9, 期 2, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202101661

关键词

2D topological semimetal; ambipolar properties; energy harvesting; hybrid heterostructures; III-V; Si; photo-electro-chemistry; photonics

资金

  1. Rennes Metropole
  2. China Scholarship Council (CSC) [2017-6254]

向作者/读者索取更多资源

The novel hybrid materials of bi-domain III-V/Si exhibit superior optical properties and efficient carrier collection capabilities, combining the excellent optical properties of semiconductors with the good transport characteristics of metallic materials, while also integrating the high efficiency and tunability of III-V inorganic bulk materials, as well as the flexible management of nano-scale charge carriers commonly found in organic blends.
Hybrid materials taking advantage of the different physical properties of materials are highly attractive for numerous applications in today's science and technology. Here, it is demonstrated that epitaxial bi-domain III-V/Si are hybrid structures, composed of bulk photo-active semiconductors with 2D topological semi-metallic vertical inclusions, endowed with ambipolar properties. By combining structural, transport, and photoelectrochemical characterizations with first-principle calculations, it is shown that the bi-domain III-V/Si materials are able within the same layer to absorb light efficiently, separate laterally the photo-generated carriers, transfer them to semimetal singularities, and ease extraction of both electrons and holes vertically, leading to efficient carrier collection. Besides, the original topological properties of the 2D semi-metallic inclusions are also discussed. This comb-like heterostructure not only merges the superior optical properties of semiconductors with good transport properties of metallic materials, but also combines the high efficiency and tunability afforded by III-V inorganic bulk materials with the flexible management of nano-scale charge carriers usually offered by blends of organic materials. Physical properties of these novel hybrid heterostructures can be of great interest for energy harvesting, photonic, electronic or computing devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据