4.5 Article

Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells

期刊

ACS INFECTIOUS DISEASES
卷 8, 期 1, 页码 210-226

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsinfecdis.1c00550

关键词

Plasmodium falciparum; peroxide antimalarials; ozonides; artemisinins; redox homeostasis; glutathione

资金

  1. NIH [1160705, APP1128003, APP1185354, APP1148700]
  2. [AI116723-01]

向作者/读者索取更多资源

This study used chemoproteomics to investigate the protein alkylation targets of peroxide antimalarials and found a significant alkylation of proteins involved in redox homeostasis. Disrupted redox processes were confirmed and changes in cellular thiol levels were observed. These findings reveal the mechanism of action of peroxide antimalarials.
: Plasmodium falciparum causes the most lethal form of malaria. Peroxide antimalarials based on artemisinin underpin the frontline treatments for malaria, but artemisinin resistance is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides, are in clinical development and offer a potential alternative. Here, we used chemoproteomics to investigate the protein alkylation targets of artemisinin and ozonide probes, including an analogue of the ozonide clinical candidate, artefenomel. We greatly expanded the list of proteins alkylated by peroxide antimalarials and identified significant enrichment of redox-related proteins for both artemisinins and ozonides. Disrupted redox homeostasis was confirmed by dynamic live imaging of the glutathione redox potential using a genetically encoded redox-sensitive fluorescence-based biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based thiol metabolomics also confirmed changes in cellular thiol levels. This work shows that peroxide antimalarials disproportionately alkylate proteins involved in redox homeostasis and that disrupted redox processes are involved in the mechanism of action of these important antimalarials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据