4.7 Article

Photocatalytic Activity of Revolutionary Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa's Bio-Capped Silver Nanoparticles for Industrial Wastewater Treatment

期刊

NANOMATERIALS
卷 11, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/nano11123241

关键词

biogenic silver nanoparticles; macroalgae; photocatalysts; dye degradation; kinetics; mechanism

资金

  1. Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia [20/4]

向作者/读者索取更多资源

The study synthesized stable silver nanoparticles using extracts from marine macroalgae and successfully photodegraded hazardous pigments. Various tests confirmed the morphology and structure of the NPs, while optimization of experimental parameters achieved highly efficient photodegradation of dyes.
More suitable wastewater treatment schemes need to be developed to get rid of harmful dyes and pigments before they are discharged, primarily from apparel and textile factories, into water bodies. Silver nanoparticles (Ag-NPs) are very effective, reductive nanocatalysts that can degrade many organic dyes. In this study, Ag-NPs are stabilized and capped with bioactive compounds such as Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa from marine macroalgae extracts to produce Ag[GE], Ag[TE], and Ag[EE] NPs. The reduction of Ag ions and the production of Ag[GE], Ag[TE], and Ag[EE] NPs have been substantiated by UV-Vis spectroscopy, SEM, EDX, and XRD tests. The NPs are sphere and crystalline shaped in nature with dimensions ranging from 20 to 25 nm. The biosynthesized Ag[GE], Ag[TE], Ag[EE] NPs were applied to photodegrade hazardous pigments such as methylene blue, Congo red, safranine O, and crystal violet under sunlight irradiation. In addition to the stability analysis, various experimental parameters, including dye concentration, exposure period, photocatalyst dose, and temperature, were optimized to achieve 100% photodegradation of the dyes. Moreover, the thermodynamic and kinetic parameters were calculated and the impact of scavengers on the photocatalytic mechanism was also investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据