4.7 Article

Influences of Elastic Foundations and Material Gradient on the Dynamic Response of Polymer Cylindrical Pipes Patterned by Carbon Nanotube Subjected to Moving Pressures

期刊

NANOMATERIALS
卷 11, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/nano11113075

关键词

nanocomposites; polymer pipes; elastic foundations; moving pressures; CNTs; heterogeneity; dynamic coefficient; critical speed

向作者/读者索取更多资源

The study aimed to analyze the effects of elastic foundations and material gradient on the dynamic response of CNT-based polymer pipes under combined static and moving pressures. Different distributions of CNTs, including uniform and linear distributions, were considered in the analysis to find new analytical expressions for dynamic coefficients and critical velocities. The study also conducted numerical computations to examine the effects of EFs on critical parameters based on characteristics of pipes, speed of moving pressures, distribution of CNTs, and change in volume fractions.
Composite materials are frequently used in the construction of rail, tunnels, and pipelines as well as in the construction of aircraft, ships, and chemical pipelines. When such structural elements are formed from new-generation composites, such as CNT-reinforced composites, and their interaction with the ground, there is a need to renew the dynamic response calculations under moving pressures and to create new mathematical solution methods during their design. The aim of this study was to analyze the influences of elastic foundations (EFs) and material gradient on the dynamic response of infinitely long carbon nanotube (CNT)-based polymer pipes under combined static and moving pressures. The CNT-based polymer pipes resting on the EFs were exposed to the axial and moving pressures. The uniform and heterogeneous reinforcement distributions of CNTs, which varied linearly throughout the thickness of polymer pipes, were considered. After setting the problem, the fundamental equations derived to find new analytical expressions for dynamic coefficients and critical velocity, which are dynamic characteristics of cylindrical pipes reinforced by the uniform and linear distributions of CNTs, were solved in the framework of the vibration theory. Finally, numerical computations were performed to examine the effects of EFs on the critical parameters depending on the characteristics of the pipes, the speed of moving pressures, the shape of the distribution of CNTs, and the change in volume fractions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据