4.7 Article

The Size and Shape Effects on the Melting Point of Nanoparticles Based on the Lennard-Jones Potential Function

期刊

NANOMATERIALS
卷 11, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/nano11112916

关键词

lennard-jones potential function; cohesive energy; melting point; nanoparticles; shape factor

资金

  1. King Saud University, Riyadh, Saudi Arabia [RSP-2021/328]

向作者/读者索取更多资源

A model based on the Lennard-Jones potential function is proposed to calculate the melting points of nanoparticles, considering the effects of size, shape, atomic volume, and surface packing. The model for spherical nanoparticles agrees with experimental values and can predict the melting points accurately. The non-integer L-J potential function can also be used to predict the melting points of nanoparticles.
A model is proposed to calculate the melting points of nanoparticles based on the Lennard-Jones (L-J) potential function. The effects of the size, the shape, and the atomic volume and surface packing of the nanoparticles are considered in the model. The model, based on the L-J potential function for spherical nanoparticles, agrees with the experimental values of gold (Au) and lead (Pb) nanoparticles. The model, based on the L-J potential function, is consistent with Qi and Wang's model that predicts the Gibbs-Thompson relation. Moreover, the model based on the non-integer L-J potential function can be used to predict the melting points Tm of nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据