4.5 Article

Rod Mill Product Control and Its Relation to Energy Consumption: A Case Study

期刊

MINERALS
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/min12020183

关键词

milling; numerical simulation; energy consumption; mineral processing

向作者/读者索取更多资源

This study investigates the effects of six operating parameters on the product of rod milling, using deliquescent and soluble potash ore as the material. The study finds that reducing the percentage of grinding media can decrease energy consumption and reduce overgrinding. By controlling other process parameters, energy consumption and pollution can be controlled.
Energy consumption and pollution are current strategic issues that need to be addressed in the mining industry. Both have an economic and environmental impact on production, so their optimization, control, and mitigation are, at the very least, mandatory. Although rod milling has fallen into disuse in recent decades, some companies still use it in their processing plants. This is due to the ability of rod milling to reduce particle size while avoiding overgrinding. In this study, a material that is particularly difficult to characterize was used to study how to control rod-milling particle size distribution product: potash ore, which is deliquescent and soluble under certain conditions. A laboratory-scale tumbling rod mill was designed for this study, and six operative parameters were tested and analyzed in order to detect the main influences on the mill product, attending to material requirements for further processes such as recirculation load or froth flotation for beneficiation. Although the rotational speed of the mill is the parameter that shows the greatest reduction in energy consumption, reaching almost 40% improvement in specific energy applied to the particles, it is not possible to control particle size reduction ratio. However, when a low percentage of grinding media is used, it reduces around 25% of the energy used and, in turn, reduces the amount of overgrinding (40% reduction in the F-300 control parameter, for example), which is a strategic objective of this study. In addition, by controlling other process parameters, such as slurry density or lifter geometry, energy consumption and its subsequent saving and pollution can be controlled, depending on process plant requirements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据