4.4 Article

Tissue Preparation Techniques for Contrast-Enhanced Micro Computed Tomography Imaging of Large Mammalian Cardiac Models with Chronic Disease

期刊

出版社

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/62909

关键词

-

资金

  1. French Government as part of the Investments of the Future program [ANR-10-IAHU-04]
  2. Leducq Foundation (RHYTHM network) [ANR-17-CE14-0029-01]
  3. European Research Area in Cardiovascular Diseases (ERA-CVD) [H2020-HCO-2015_680969]
  4. French Region Nouvelle Aquitaine [2016 -1R 30113 0000 7550/2016-1R 30113 0000 7553, ANR-19-ECVD-0006-01]
  5. Agence Nationale de la Recherche (ANR) [ANR-19-ECVD-0006] Funding Source: Agence Nationale de la Recherche (ANR)

向作者/读者索取更多资源

Structural remodeling is a common result of chronic pathological stresses on the heart. Understanding the properties of diseased tissue is critical for determining their interactions with arrhythmic behavior. Microscale tissue remodeling is emerging as an important source of lethal arrhythmia, especially in young adults.
Structural remodeling is a common consequence of chronic pathological stresses imposed on the heart. Understanding the architectural and compositional properties of diseased tissue is critical to determine their interactions with arrhythmic behavior. Microscale tissue remodeling, below the clinical resolution, is emerging as an important source of lethal arrhythmia, with high prevalence in young adults. Challenges remain in obtaining high imaging contrast at sufficient microscale resolution for preclinical models, such as large mammalian whole hearts. Moreover, tissue composition-selective contrast enhancement for three-dimensional high-resolution imaging is still lacking. Non-destructive imaging using micro-computed tomography shows promise for high-resolution imaging. The objective was to alleviate sufferance from X-ray over attenuation in large biological samples. Hearts were extracted from healthy pigs (N = 2), and sheep (N = 2) with either induced chronic myocardial infarction and fibrotic scar formation or induced chronic atrial fibrillation. Excised hearts were perfused with: a saline solution supplemented with a calcium ion quenching agent and a vasodilator, ethanol in serial dehydration, and hexamethyldisilizane under vacuum. The latter reinforced the heart structure during air-drying for 1 week. Collagen-dominant tissue was selectively bound by an X-ray contrast-enhancing agent, phosphomolybdic acid. Tissue conformation was stable in air, permitting long-duration microcomputed tomography acquisitions to obtain high-resolution (isotropic 20.7 mu m) images. Optimal contrast agent loading by diffusion showed selective contrast enhancement of the epithelial layer and sub-endocardial Purkinje fibers in healthy pig ventricles. Atrial fibrillation (AF) hearts showed enhanced contrast accumulation in the posterior walls and appendages of the atria, attributed to greater collagen content. Myocardial infarction hearts showed increased contrast selectively in regions of cardiac fibrosis, which enabled the identification of interweaving surviving myocardial muscle fibers. Contrast-enhanced air-dried tissue preparations enabled microscale imaging of the intact large mammalian heart and selective contrast enhancement of underlying disease constituents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据