4.7 Article

Microstructure of Portland cement paste subjected to different CO2 concentrations and further water curing

期刊

JOURNAL OF CO2 UTILIZATION
卷 53, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jcou.2021.101714

关键词

CO2 curing; Calcium carbonate; Silica gels; Compressive strength; Microstructure

资金

  1. National Natural Science Foundation of China [U1605242]
  2. Joint Open Fund of Key Labo-ratory for Advanced Technology in Environmental Protection of Jiangsu Province [JH201802]

向作者/读者索取更多资源

This study demonstrates that a high concentration of CO2 increases the content of calcite in CO2-cured cement pastes, which accelerates the hydration of cement clinker. In addition, CO2-cured cement pastes exhibit higher compressive strength and lower porosity.
Understanding the effect of formed calcium carbonate and highly polymerization of silicates on the microstructure of cement paste exposed to early CO2 curing and further hydration process is crucial to comprehend the mechanisms of CO2 curing. In this paper, the cement pastes were further cured in water after CO2 curing under two CO2 concentrations (3% and 20%) and the carbonation depth, compressive strength, composition and morphology of the formed products were characterized. The results showed that calcite was the main product generated in CO2-cured pastes and its content was increased with the increasing CO2 concentration. The formed calcium carbonate provided additional nucleation sites and accelerated the hydration of C3S in further water curing. Furthermore, calcium carbonate was consumed by C3A to form calcium aluminate monocarbonate, which delayed the transformation of ettringite to monosulfate during further water curing. The decarbonation temperature of the formed calcium carbonate was increased with the increase of the CO2 concentration, but it was decreased in further water curing due to participating the further hydration process. The early carbonation curing improved the polymerization of silica gel, which was decreased in the subsequent hydration due to the formation of C-S-H. The CO2-cured sample showed higher early compressive strength and comparable long-term compressive strength compared to the conventional samples due to the lower porosity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据