4.6 Review

Ion Channel Dysfunction in Astrocytes in Neurodegenerative Diseases

期刊

FRONTIERS IN PHYSIOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2022.814285

关键词

astrocytes; aquaporins; transient receptor potential channel; ATP-sensitive potassium channel; inwardly rectifying potassium channel; KCa3; 1 channel; neurodegenerative disease

资金

  1. National Natural Science Foundation of China [81700977, 81500858]

向作者/读者索取更多资源

Ion channel proteins in astrocytes are strongly associated with neurodegenerative disorders by participating in oxidative stress, neuroinflammation, and pathological processes. Understanding these critical proteins and their signaling pathways may provide new therapeutic targets for neurodegenerative diseases.
Astrocytes play an important role in the central nervous system (CNS). Ion channels in these cells not only function in ion transport, and maintain water/ion metabolism homeostasis, but also participate in physiological processes of neurons and glial cells by regulating signaling pathways. Increasing evidence indicates the ion channel proteins of astrocytes, such as aquaporins (AQPs), transient receptor potential (TRP) channels, adenosine triphosphate (ATP)-sensitive potassium (K-ATP) channels, and P2X7 receptors (P2X7R), are strongly associated with oxidative stress, neuroinflammation and characteristic proteins in neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Since ion channel protein dysfunction is a significant pathological feature of astrocytes in neurodegenerative diseases, we discuss these critical proteins and their signaling pathways in order to understand the underlying molecular mechanisms, which may yield new therapeutic targets for neurodegenerative disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据