4.6 Article

Differential Expression of Hypothalamic and Gill-crh System With Osmotic Stress in the Euryhaline Black Porgy, Acanthopagrus schlegelii

期刊

FRONTIERS IN PHYSIOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2021.768122

关键词

crh; crhr; alpha-nka; gill; fish; brain; osmotic stress

资金

  1. Academia Sinica project, Taiwan [AS-99-TP-B05, AS-101-TP-B01]

向作者/读者索取更多资源

This study confirms the role of corticotropin releasing hormone and receptor in black porgy under different salinity environments, as well as the expression of these genes at different exposure times. Experimental results show that CRH and CRHR play a key regulatory role in the gill tissue of black porgy, and black porgy shows significant physiological responses when facing different salinity stresses.
The local gill production of corticotropin releasing hormone (crh) and crh-receptor (crhr) is hypothesized to play important roles during seawater (SW) and freshwater (FW) acclimation in euryhaline black porgy (Acanthopagrus schlegelii). The mRNA expression of crh, crhr, and Na+/K+-ATPase (a-nka) was examined in SW and FW diencephalon (Dien) and in the gills at different exposure time by Q-PCR analysis. The in situ hybridization results indicate that crh mRNA hybridization signals were more abundant in FW fish in the gigantocellular (PMgc) and parvocellular (PMpc) part of the magnocellular preoptic nucleus versus SW fish. The crh and crhr-expressing cells were located in basal cells of gill filament. Furthermore, in vitro dexamethasone (DEX) treatment could increase the crh-system in the gill. Increased transcripts of the crh-system in the gill via in vitro and in vivo CRH treatments suggest that CRH may regulate the system in a local manner. The a-Nka cells were localized in the filament and secondary lamellae mitochondria rich cells (MRCs) of FW fish at 8 h and 1 day. a-Nka cells were seen in both filament and lamellae in the FW but much less in SW fish indicating that gills play key roles in black porgy osmoregulation. Gill crh and crhr play important roles in the response to salinity stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据