4.6 Article

Effect of the Type of Heterostructures on Photostimulated Alteration of the Surface Hydrophilicity: TiO2/BiVO4 vs. ZnO/BiVO4 Planar Heterostructured Coatings

期刊

CATALYSTS
卷 11, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/catal11121424

关键词

photostimulated hydrophilicity; metal oxide surfaces; heterostructures; charge transfer; charge separation; heterojunctions; surface energy; work function

资金

  1. RFBR [19-32-90111]

向作者/读者索取更多资源

The comparative studies of photostimulated hydrophilic behavior on heterostructured TiO2/BiVO4 and ZnO/BiVO4, as well as monocomponent TiO2 and ZnO nanocoating surfaces, show that the differences in heterostructure types play a significant role in determining charge transfer behavior at heterojunctions and surface superhydrophilic conversion.
Here, we report the results of comparative studies of the photostimulated hydrophilic behavior of heterostructured TiO2/BiVO4 and ZnO/BiVO4, and monocomponent TiO2 and ZnO nanocoating surfaces. The chemical composition and morphology of the synthesized nanocoatings were characterized by XPS, SEM, and AFM methods. The electronic energy structure of the heterostructure components (band gap, top of the valence band, bottom of the conduction band, and Fermi level position) was determined on the basis of experimental results obtained by XPS, UV-V absorption spectroscopy and Kelvin probe methods. According to their electronic energy structure, the ZnO/BiVO4 and TiO2/BiVO4 heterostructures correspond to type I and type II heterostructures, respectively. The difference in the type of heterostructures causes the difference in the charge transfer behavior at heterojunctions: the type II TiO2/BiVO4 heterostructure favors and the type I ZnO/BiVO4 heterostructure prevents the photogenerated hole transfer from BiVO4 to the outer layer of the corresponding metal oxide. The results of the comparative studies show that the interaction of the photogenerated holes with surface hydroxy-hydrated multilayers is responsible for the superhydrophilic surface conversion accompanying the increase of the surface free energy and work function. The formation of the type II heterostructure leads to the spectral sensitization of the photostimulated surface superhydrophilic conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据