4.5 Article

Electrospun Carbon Nanofibers Loaded with Atomic FeNx/Fe2O3 Active Sites for Efficient Oxygen Reduction Reaction in Both Acidic and Alkaline Media

期刊

ADVANCED MATERIALS INTERFACES
卷 9, 期 6, 页码 -

出版社

WILEY
DOI: 10.1002/admi.202101904

关键词

electrospinning; iron; oxygen reduction reaction; single atom; zinc-air batteries

资金

  1. National Science and Technology Major Project [2020YFB1506001]
  2. Department of Science and Technology of Sichuan Province [2021YFG0231]

向作者/读者索取更多资源

This study reports a novel and efficient ORR electrocatalyst with atomic FeNx sites and neighboring Fe2O3 nanoparticles embedded in carbon nanofibers. The catalyst shows a well-defined fibrous structure, large specific surface area, and uniformly distributed active sites, and exhibits excellent ORR performance in both alkaline and acidic media. Additionally, the catalyst shows high discharge voltage, excellent power density, and cycling durability in Zn-air batteries.
Renewable energy storage systems based on oxygen reduction reaction (ORR) call for high-performance, durable, and low-cost electrocatalysts. However, practical applications of ORR catalysts available today are hampered by the inability to load accessible catalytic sites efficiently. Herein, a novel and efficient ORR electrocatalyst (Fe2O3/FeNx@CNF) with atomic FeNx sites and neighboring Fe2O3 nanoparticles embedded in interconnected carbon nanofibers prepared via electrospinning is reported. Detailed material characterizations confirm that the as-prepared catalysts possess a well-defined fibrous structure with hierarchical pores, large specific surface area, and uniformly distributed Fe2O3/FeNx active sites. Further, it exhibits excellent ORR performance with high onset potential, half-wave potential, and current density in both alkaline and acidic media. And these electrocatalysts show excellent long-term performance and tolerance to methanol, exceeding the properties of commercial platinum catalysts. Additionally, the Fe2O3/FeNx@CNF electrocatalyst prepared in this study exhibits high discharge voltage, excellent power density, and cycling durability in Zn-air batteries. Notably, the detailed analyses demonstrate the co-existence of Fe2O3 nanoparticles and FeNx active sites boost the ORR catalytic activity of the hybrid catalyst. These new findings, particularly the enhancement of intrinsic activity of FeNx sites brought about by Fe2O3 nanoparticles, provide insights into the rational design of hybrid single-atom ORR electrocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据