4.5 Review

Titanium Carbide-Based Adsorbents for Removal of Heavy Metal Ions and Radionuclides: From Nanomaterials to 3D Architectures

期刊

ADVANCED MATERIALS INTERFACES
卷 8, 期 21, 页码 -

出版社

WILEY
DOI: 10.1002/admi.202100703

关键词

adsorption; heavy metal ions; material design; metal removal; radioactive pollutant; titanium carbides

向作者/读者索取更多资源

Titanium carbides are promising materials for removing toxic HMIs and radionuclides from wastewater due to their hydrophilicity, controllable surface charge, specific active groups, and high radiation stability. Research has focused on developing functional titanium carbide composite materials to enhance adsorption performance and overcome limitations of conventional nanomaterials. The evolution of titanium carbide-based adsorbents from 2D nanosheets to a variety of composite materials and 3D architectures has been summarized, along with practical methods for design and synthesis. Adsorption mechanisms and potential applications of these surface-modified composite materials are discussed, highlighting the challenges and prospects for future development in metal ion adsorption.
Heavy metal ions (HMIs) and radionuclides pose serious threats to food safety, human health, and marine ecosystems. Titanium carbides are advantageous owing to their good hydrophilicity, controllable surface charge, specific active groups, and high radiation stability, which make them effective candidates for removing toxic HMIs and radionuclides from wastewater. Recently, a lot of research is conducted to discover new methods for preparing functional titanium carbide composite materials to enhance the adsorption performance and overcome the shortcomings of conventional nanomaterials. Since 2011, the titanium carbide-based adsorbents have undergone a developmental process from a single 2D nanosheet to a wide range of composite materials and 3D architectures. In this review, the development and progress in the design and synthesis methods of various titanium carbide-based adsorbents are summarized. These methods are practical, scalable, and controllable in terms of structure and surface chemistry. The application of these surface-modified composite materials in the adsorption of HMIs and radionuclides is also discussed, and the adsorption mass transfer mechanism of the adsorbates on titanium carbide-based adsorbents is analyzed. Finally, the challenges and prospects of titanium carbide composite materials for future applications in the domain of metal ion adsorption are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据