4.5 Article

Chipset Nanosensor Based on N-Doped Carbon Nanobuds for Selective Screening of Epinephrine in Human Samples

期刊

ADVANCED MATERIALS INTERFACES
卷 9, 期 1, 页码 -

出版社

WILEY
DOI: 10.1002/admi.202101473

关键词

advanced nanocarbon materials; electrochemical sensors; biosensors; functionalized electrodes; nitrogen-doped carbon-based materials; portable nanosensors; sensitive and selective epinephrine assay

资金

  1. Japan Society for the Promotion of Science (JSPS) [P19067]

向作者/读者索取更多资源

The functionalized chipset nanosensor designed in this study, using N-CNB and N-CNS, showed enhanced performance for monitoring neurotransmitters in human fluids with high selectivity and sensitivity.
Chipset nanosensor design and fabrication are important for healthcare research and development. Herein, a functionalized chipset nanosensor is designed to monitor neurotransmitters (i.e., epinephrine (EP)) in human fluids. An interdigitated electrode array (IDA) is functionalized by N-doped carbon nanobud (N-CNB) and N-doped carbon nanostructure (N-CNS). The surface morphology of N-CNB shows the formation of nanotubular-like branches on sheets and micrometer-size tubes. The N-CNS design consists of the formation of aggregated sheets and particles in nanometer size. The irregular shape formation provides surface heterogeneity and numerous free spaces between the stacked nanostructures. N-atoms ascertain highly active N-CNS with multifunctional active centers, electron-rich charged surface, and short distance pathway. The N-CNB/IDA exhibits the best performance for EP signaling with high sensitivity and selectivity. The N-CNB/IDA sensing performance for EP detection indicates the successful design of a highly selective and sensitive assay with low detection limit of 0.011 x 10(-6) m and a broad linear range of 0.5 x 10(-6) to 3 x 10(-6) m. The N-CNB/IDA exhibits a high degree of accuracy and reproducibility with RSD of 2.7% and 3.9%, respectively. Therefore, the chipset nanosensor of N-CNB/IDA can be used for on-site monitoring of EP in human serum samples and further used in daily monitoring of neuronal disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据