4.5 Article

Multi-scale model predicting friction of crystalline materials

期刊

ADVANCED MATERIALS INTERFACES
卷 9, 期 4, 页码 -

出版社

WILEY
DOI: 10.1002/admi.202100914

关键词

2D materials; density functional theory calculations; stochastic thermodynamics; tribology

资金

  1. European Union [721642]

向作者/读者索取更多资源

The multi-scale computational framework presented in this study combines classical thermally activated models with first principles methods to accurately capture the properties of real materials, providing new possibilities for designing material surfaces with atomically tailored properties. By investigating energy dissipation due to friction in materials directly from their electronic structure, this framework opens up opportunities to explore a wide range of material surfaces. The application of this framework to 2D layered materials reveals an intricate interplay between the energy landscape topology and dissipation, which static approaches fail to capture.
A multi-scale computational framework suitable for designing solid lubricant interfaces fully in silico is presented. The approach is based on stochastic thermodynamics founded on the classical thermally activated 2D Prandtl-Tomlinson model, linked with first principles methods to accurately capture the properties of real materials. It allows investigating the energy dissipation due to friction in materials as it arises directly from their electronic structure, and naturally accessing the time-scale range of a typical friction force microscopy. This opens new possibilities for designing a broad class of material surfaces with atomically tailored properties. The multi-scale framework is applied to a class of 2D layered materials and reveals a delicate interplay between the topology of the energy landscape and dissipation that known static approaches based solely on the energy barriers fail to capture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据