4.5 Article

Design Optimization of Perfluorinated Liquid-Infused Surfaces for Blood-Contacting Applications

期刊

ADVANCED MATERIALS INTERFACES
卷 9, 期 10, 页码 -

出版社

WILEY
DOI: 10.1002/admi.202102214

关键词

blood flow; liquid-infused surfaces; lubricant depletion; medical device; self-assembled monolayers; thrombosis

资金

  1. Australian Government Research Training Program (RTP) Scholarship
  2. University of Sydney RTP Supplementary Scholarship
  3. Heart Research Institute
  4. University of Sydney Charles Perkins Centre Early-Mid Career Researcher Seed Funding
  5. Australian Research Council Future Fellowship scheme [FT180100214]
  6. Clive and Vera Ramaciotti Foundations Health Investment Grant from the National Heart Foundation of Australia [103004]
  7. Vanguard Grant from the National Heart Foundation of Australia [103004]
  8. University of Sydney, Heart Research Institute
  9. University of Sydney Nano Institute
  10. Australian Research Council [FT180100214] Funding Source: Australian Research Council

向作者/读者索取更多资源

Tethered-liquid perfluorocarbon (TLP) coatings have shown potential in reducing blood adhesion and delaying thrombosis on blood-contacting medical devices. In this study, a vapor phase silanization reaction was used to create tethered-perfluorocarbon (TP) layers with large bumpy aggregates on top of a uniform coating. The vapor phase method was found to be effective in reproducibly creating slippery coatings with low water sliding angles. The TP layer retained perfluorinated lubricants even under high shear rates and showed reduced fibrin adhesion from human whole blood compared to control surfaces.
Tethered-liquid perfluorocarbon (TLP) coatings show promise for blood-contacting medical device applications to reduce blood adhesion and delay thrombosis. However, their fabrication and longevity under external fluid flow is not well characterized. A vapor phase silanization reaction leading to the formation of tethered-perfluorocarbon (TP) layers containing large bumpy aggregates, 300 +/- 200 nm thick, on top of an underlying 35 +/- 15 nm thick uniform coating is reported. The vapor phase method compares favorably to the well-established liquid phase deposition to reproducibly create slippery coatings on silicon and polystyrene with very low water sliding angles (2 degrees +/- 1 degrees), without the need to control humidity conditions. The TP layer retains perfluorinated lubricants up to 20 000 s(-1), using a cone-and-plate rheometer, with the higher viscosity lubricant perfluoroperhydrophenanthrene being more resistant to depletion than perfluorodecalin. TLP infused with either of the lubricants effectively reduces adhesion of fibrin from human whole blood relative to TP and control hydrophilic and hydrophobic surfaces. The combination of highly fluorinated TP coatings grafted from the vapor phase to create nanoscale structured surfaces infused with higher viscosity lubricant may be the most suitable combination for clinical applications of liquid-infused surfaces to reduce thrombosis in blood-contacting medical devices under flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据