4.6 Article

Environmental Footprint and Economics of a Full-Scale 3D-Printed House

期刊

SUSTAINABILITY
卷 13, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/su132111978

关键词

additive manufacturing; life cycle assessment; life cycle costing; sustainable construction; concrete

资金

  1. Open Access Program [FRG20-M-E44]
  2. American University of Sharjah

向作者/读者索取更多资源

3D printing in construction industry aims to improve economics and reduce environmental impacts. The study compared the eco-efficiency and economics between 3D printing and traditional construction methods, showing that 3D printed houses have lower environmental impacts and higher cost savings compared to conventional concrete construction. Sensitivity analysis suggests that reducing cement ratios can further mitigate environmental impacts in 3D printing.
3D printing, is a newly adopted technique in the construction sector with the aim to improve the economics and alleviate environmental impacts. This study assesses the eco-efficiency of 3D printing compared to conventional construction methods in large-scale structural fabrication. A single-storey 3D-printed house was selected in the United Arab Emirates to conduct the comparative assessment against traditional concrete construction. The life cycle assessment (LCA) framework is utilized to quantify the environmental loads of raw materials extraction and manufacturing, as well as energy consumption during construction and operation phases. The economics of the selected structural systems were investigated through life cycle costing analysis (LCCA), that included mainly the construction costs and energy savings. An eco-efficiency analysis was employed to aggregate the results of the LCA and LCCA into a single framework to aid in decision making by selecting the optimum and most eco-efficient alternative. The findings revealed that houses built using additive manufacturing and 3D printed materials were more environmentally favourable. The conventional construction method had higher impacts when compared to the 3D printing method with global warming potential of 1154.20 and 608.55 kg CO2 eq, non-carcinogenic toxicity 675.10 and 11.9 kg 1,4-DCB, and water consumption 233.35 and 183.95 m(3), respectively. The 3D printed house was also found to be an economically viable option, with 78% reduction in the overall capital costs when compared to conventional construction methods. The combined environmental and economic results revealed that the overall process of the 3D-printed house had higher eco efficiency compared to concrete-based construction. The main results of the sensitivity analysis revealed that up to 90% of the environmental impacts in 3D printing mortars can be mitigated with decreasing cement ratios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据