4.5 Article

Human Umbilical Cord-Mesenchymal Stem Cells Survive and Migrate within the Vitreous Cavity and Ameliorate Retinal Damage in a Novel Rat Model of Chronic Glaucoma

期刊

STEM CELLS INTERNATIONAL
卷 2021, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2021/8852517

关键词

-

资金

  1. National Natural Science Foundation of China [81170841, 81570844]
  2. Xiamen Science and Technology Program Guiding Project [502Z20149026]
  3. Huaxia Translational Medicine Youth Foundation [2017-A-00301]
  4. Key Research and Development Program of Shaanxi Province [2018ZDXM-SF-056, 2019SF-196]
  5. Research Talent Project of Xian Municipal Health Commission [J201902037]

向作者/读者索取更多资源

The study demonstrated that transplanted hUC-MSCs could survive and migrate in the vitreous cavity towards the damaged retina, providing significant neuroprotective effects on chronic glaucomatous retinal damage.
Glaucoma is the leading cause of irreversible blindness worldwide, and pathologically elevated intraocular pressure (IOP) is the major risk factor. Neuroprotection is one of the potential therapies for glaucomatous retinal damage. Intravitreal mesenchymal stem cell (MSC) transplantation provides a viable therapeutic option, and human umbilical cord- (hUC-) MSCs are attractive candidates for cell-based neuroprotection. Here, we investigated the ability of transplanted hUC-MSCs to survive and migrate within the vitreous cavity and their neuroprotective effects on chronic glaucomatous retina. For this, we developed a chronic ocular hypertension (COH) rat model through the intracameral injection of allogeneic Tenon's fibroblasts. Green fluorescent protein-transduced hUC-MSCs were then injected into the vitreous cavity one week after COH induction. Results showed that a moderate IOP elevation lasted for two months. Transplanted hUC-MSCs migrated toward the area of damaged retina, but did not penetrate into the retina. The hUC-MSCs survived for at least eight weeks in the vitreous cavity. Moreover, the hUC-MSCs were efficient at decreasing the loss of retinal ganglion cells; retinal damage was attenuated through the inhibition of apoptosis. In this study, we have developed a novel COH rat model and demonstrated the prolonged neuroprotective potential of intravitreal hUC-MSCs in chronic glaucoma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据