4.5 Article

Protective effects of vitexin on cadmium-induced renal toxicity in rats

期刊

SAUDI JOURNAL OF BIOLOGICAL SCIENCES
卷 28, 期 10, 页码 5860-5864

出版社

ELSEVIER
DOI: 10.1016/j.sjbs.2021.06.040

关键词

Cadmium; Industrial contaminant; Mitochondrial dysfunction; Vitexin; Antioxidant enzymes

类别

资金

  1. Deanship of Scientific Research at the King Saud University [RG-1440-138]

向作者/读者索取更多资源

The study demonstrated that cadmium exposure led to renal dysfunction in rats by increasing urea and creatinine levels, reducing antioxidant enzyme activities, elevating reactive oxygen species levels, and compromising mitochondrial enzyme activities. Treatment with vitexin showed potential in ameliorating the detrimental effects of cadmium-induced renal toxicity.
Cadmium (Cd) is an industrial contaminant that poses severe threats to human and animal health. Vitexin (VIT) is a polyphenolic flavonoid of characteristic pharmacological properties. We explored the curative role of vitexin on Cd-induced mitochondrial-dysfunction in rat renal tissues. Twenty-four rats were equally divided into four groups and designated as control, Cd, Cd + vitexin and vitexin treated groups. The results showed that Cd exposure increased urea and creatinine levels while decreased creatinine clearance. Cd reduced the activities of antioxidant enzymes, i.e., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione content in the Cd exposed group. Cd exposure significantly (p < 0.05) elevated the reactive oxygen species (ROS) and Thiobarbituric acid reactive substances (TBARS) levels in rat kidney. Cd also caused a significant (p < 0.05) reduction in the mitochondrial TCA-cycle enzymes, including isocitrate dehydrogenase, succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, and malate-dehydrogenase activities. Besides, mitochondrial respiratory chain enzymes, including NADH-dehydrogenase, coenzyme Q-cytochrome reductase, succinic-coenzyme Q, and cytochrome c-oxidase activities were also decreased under Cd exposure. Cd exposure also damaged the mitochondrial membrane potential (MMP). However, VIT treatment potentially reduced the detrimental effects of Cd in the kidney of rats. In conclusion, our study indicated that the VIT could attenuate the Cd-induced renal toxicity in rats. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据