4.8 Article

Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement

期刊

NANO ENERGY
卷 90, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2021.106577

关键词

Thermoelectric; Aerogel; Compressive strain; Thermoelectric generator

资金

  1. Shenzhen Fundamental Research Program [JCYJ20200109105604088]
  2. Guangdong Basic and Applied Basic Research Foundation [2019A1515111196]
  3. Opening Project of State Key Laboratory of Polymer Materials En-gineering (Sichuan University) [sklpme 2021-05-06]

向作者/读者索取更多资源

An elastic poly(3,4-ethylenedioxytiophene)-tosylate(PEDOT-Tos)/single-walled carbon nanotube (SWCNT) TE aerogel was fabricated for the first time, leading to the development of elastic TEGs with vertical-type aerogel legs displaying high TE performance and adjustable output power. Furthermore, the ultralight and compressible TEG showed excellent capability of harvesting heat under vertical temperature difference and mechanical deformation.
Despite the rapid development for thermoelectrics (TEs) and aerogels, elastic aerogel TE generators (TEGs) with vertical-type architectures have not been found to harvest heat utilizing vertical temperature difference. Herein, an elastic poly(3,4-ethylenedioxytiophene)-tosylate(PEDOT-Tos)/single-walled carbon nanotube (SWCNT) TE aerogel was fabricated via convenient chemical oxidative polymerization, physical mixing and subsequent freezedrying process. Then, we report the first elastic TEGs consisting of vertical-type aerogel legs, which not only inherit the advantages of ultralight weight and compressibility of aerogels, but also display high TE performance. The output performance can be conveniently adjusted by the number of legs, the temperature difference and compressive strain. An optimum output power of 1967 nW (output power density of 30.73 mW m-2) is achieved for the TE generator using 10 unipolar aerogel legs at 50% strain and temperature difference of 50 K. Furthermore, the ultralight and compressible TEG displays excellent capability of harvesting heat under vertical temperature difference and mechanical deformation, such as on hot oil/plate or compression by human body. The results will greatly facilitate the development of TE aerogels and TEGs, and widen the versatile application scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据