4.8 Article

Fast ion diffusion kinetics based on ferroelectric and piezoelectric effect of SnO2/BaTiO3 heterostructures for high-rate sodium storage

期刊

NANO ENERGY
卷 90, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2021.106591

关键词

SnO2; BaTiO3 heterostructure; Ferroelectric polarization; Piezoelectric effect; Ion transport; Sodium ion batteries

资金

  1. National Natural Science Foundation of China [51874199, 22078200]
  2. Natural Science Foundation of Guangdong Province [2021A1515010162]

向作者/读者索取更多资源

This study introduces a tin oxide/barium titanate heterostructure encapsulated in nitrogen-doped carbon nanofibers as a sodium ion battery anode, and utilizes the ferroelectric and piezoelectric effect to boost the rate performance of the anode.
Acceleration of reaction kinetics is urgently pursued for high-rate sodium ion batteries, while the utilization of ferroelectric and piezoelectric effect to form local micro electric field to facilitate ion transport has rarely been reported. Herein, a coherent tin oxide/barium titanate heterostructure encapsulated inside nitrogen-doped carbon nanofibers (SnO2/BaTiO3@NCNF) is introduced as sodium ion battery anode, exhibiting high capacity retention (82% over 2000 cycles at 2 A g-1) and stunning long-term cyclability (183.4 mAh g-1 after 10,000 cycles at 5 A g-1). The local potential produced by piezoelectric and ferroelectric effect of BaTiO3 (BTO) can boost sodium ion diffusion kinetics and promote rate performance of SnO2 anode. The piezoelectric effect is initiated from exploiting the drawback of volume expansion of SnO2, while the ferroelectric effect is originated from the charge separation of polarized BTO particles under external electric field. Such principle is instructive for alloying-type and convention-type anodes of alkali-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据