4.8 Article

Role of interfaces in organic-inorganic flexible thermoelectrics

期刊

NANO ENERGY
卷 89, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2021.106380

关键词

Flexible thermoelectric nanocomposites; Interface; Highly conductive layer; Low thermal conductivity

资金

  1. National Key Research Program of China [2016YFA 0201003]
  2. Basic Science Center Project of National Natural Science Foundation of China [51788104]
  3. National Science Foundation of China [51672155, 51772016]

向作者/读者索取更多资源

By using carbon nanotubes-tellurium-PEDOT:PSS nanocomposites, it is possible to achieve ultra-low thermal conductivity at high CNT content, which is understood through quantitative mappings of thermal conductivity in micro-scale interface regions. Moreover, the formation of highly conductive layers at the interfaces of Te PEDOT:PSS and CNTs PEDOT:PSS can enhance electrical conductivity and Seebeck coefficient simultaneously.
The interface is always a critical factor affecting thermoelectric performance in composite systems. However, understanding the electrical and thermal transport behaviors at the interfaces has been a long-standing challenge. Here, we advance this understanding by using spatially resolved current and thermal measurements in single wall carbon nanotubes (CNTs)-Tellurium-poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) nanocomposites. Our results indicate that the obtained ultra-low thermal conductivity in such nanocomposites with high CNTs content can be understood by the interface thermal resistance and interface density of the clusters, which is directly confirmed by quantitative mappings of thermal conductivity in the micro-scale interface regions via scanning thermal microscopy. Furthermore, the highly conductive layers can be formed at the interfaces of Te PEDOT:PSS and CNTs PEDOT:PSS revealed by high-resolution local conductivity and topography mapping, leading to simultaneous enhancement of electrical conductivity and Seebeck coefficient. Ultimately, a power factor of 224 mu W/mK(2), as well as an ultralow in-plane thermal conductivity of 0.39 W/mK at 410 K, has been achieved by tuning carrier mobility and phonon scattering using multiple polymer inorganic interfaces. The ZT value reaches up to 0.24 at 410 K and a planar flexible thermoelectric generator exhibits excellent output power of 1.33 mu W and highly competitive normalized maximum power density of 0.26 W/m at a temperature difference of 67.8 K These approaches give deep insights to understand the interface role in nanocomposites, and also attests to the great potential of using such organic-inorganic composites in wearable electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据