4.6 Article

Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms

期刊

MICROMACHINES
卷 13, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/mi13020303

关键词

centrifugal microfluidics; microfluidic valving; point-of-care diagnostics; Lab-on-CD

资金

  1. AMDI Inc. (Autonomous Medical Devices Incorporated)

向作者/读者索取更多资源

Compact disc (CD)-based centrifugal microfluidics is a popular choice for portable biological and chemical assays. This study presents two new multiple-use wax valve designs driven by capillary or magnetic forces. The capillary-driven wax valve was analyzed through numerical simulations and experimental results, and the parameters of the valve were measured and analyzed theoretically.
Compact disc (CD)-based centrifugal microfluidics is an increasingly popular choice for academic and commercial applications as it enables a portable platform for biological and chemical assays. By rationally designing microfluidic conduits and programming the disc's rotational speeds and accelerations, one can reliably control propulsion, metering, and valving operations. Valves that either stop fluid flow or allow it to proceed are critical components of a CD platform. Among the valves on a CD, wax valves that liquify at elevated temperatures to open channels and that solidify at room temperature to close them have been previously implemented on CD platforms. However, typical wax valves on the CD fluidic platforms can be actuated only once (to open or to close) and require complex fabrication steps. Here, we present two new multiple-use wax valve designs, driven by capillary or magnetic forces. One wax valve design utilizes a combination of capillary-driven flow of molten wax and centrifugal force to toggle between open and closed configurations. The phase change of the wax is enabled by heat application (e.g., a 500-mW laser). The second wax valve design employs a magnet to move a molten ferroparticle-laden wax in and out of a channel to enable reversible operation. A multi-phase numerical simulation study of the capillary-driven wax valve was carried out and compared with experimental results. The capillary wax valve parameters including response time, angle made by the sidewall of the wax reservoir with the direction of a valve channel, wax solidification time, minimum spin rate of the CD for opening a valve, and the time for melting a wax plug are measured and analyzed theoretically. Additionally, the motion of the molten wax in a valve channel is compared to its theoretical capillary advance with respect to time and are found to be within 18.75% of the error margin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据