4.7 Article

Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin

期刊

JOURNAL OF NANOBIOTECHNOLOGY
卷 19, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12951-021-01048-3

关键词

Glioma; Biomimetic liposomes; Homologous-targeting; Immune escaping; Blood-brain barrier; Transferrin

资金

  1. National Natural Science Foundation of China [81730108]
  2. Key Project of Zhejiang project Ministry of Science and Technology [2021C03087]
  3. Key Project of Hangzhou Ministry of Science and Technology [20212013B03]
  4. Zhejiang Province Basic public welfare research program of China [1579 LGF20H300006]

向作者/读者索取更多资源

The study demonstrated that the active-targeting biomimetic liposome, Tf-ELE/CTX@BLIP, is highly stable and exhibits significant homologous targeting and immune evasion. In vivo studies showed that treatment with Tf-ELE/CTX@BLIP led to increased survival time and decreased tumor volume in mice, making it a promising nanoplatform for drug delivery to gliomas.
Background: Effective treatment of glioma requires a nanocarrier that can cross the blood-brain barrier (BBB) to target the tumor lesion. In the current study, elemene (ELE) and cabazitaxel (CTX) liposomes were prepared by conjugating liposomes with transferrin (Tf) and embedding the cell membrane proteins of RG2 glioma cells into liposomes (active-targeting biomimetic liposomes, Tf-ELE/CTX@BLIP), which exhibited effective BBB infiltration to target glioma. Results: The findings showed that Tf-ELE/CTX@BLIP was highly stable. The liposomes exhibited highly significant homologous targeting and immune evasion in vitro and a 5.83-fold intake rate compared with classical liposome (ELE/CTX@LIP). Bioluminescence imaging showed increased drug accumulation in the brain and increased tumor penetration of Tf-ELE/CTX@BLIP in orthotopic glioma model nude mice. Findings from in vivo studies indicated that the antitumor effect of the Tf-ELE/CTX@BLIP led to increased survival time and decreased tumor volume in mice. The average tumor fluorescence intensity after intravenous administration of Tf-ELE/CTX@BLIP was 65.2, 12.5, 22.1, 6.6, 2.6, 1.5 times less compared with that of the control, CTX solution, ELE solution, ELE/CTX@LIP, ELE/CTX@BLIP, Tf-ELE/CTX@LIP groups, respectively. Histopathological analysis showed that Tf-ELE/CTX@BLIP were less toxic compared with administration of the CTX solution. Conclusion: These findings indicate that the active-targeting biomimetic liposome, Tf-ELE/CTX@BLIP, is a promising nanoplatform for delivery of drugs to gliomas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据