4.6 Review

Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 10, 期 9, 页码 4533-4557

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ta09334g

关键词

-

资金

  1. European Structural and Investment Funds, OP RDE [CZ.02.2.69/0.0/0.0/20_079/0017899]
  2. Czech Science Foundation (GACR) [20-16124J]

向作者/读者索取更多资源

This article reviews recent advancements in screen printable transition metal carbide and nitride (MXene) ink formulations and discusses their challenges in flexible micro-supercapacitor (MSC) applications. The focus is on efficient MXene ink formulation strategies, improving substrate and ink interactions, addressing oxidative and deformation stability issues of screen printed MXene MSCs, and challenges in integrating MXene MSCs as energy storage components in device architectures.
Additive manufacturing industries have been focusing on the development of novel ink formulation strategies that can incorporate functional materials to print highly efficient electronic patterns for flexible devices. Such printed micropatterns were found to miniaturize the device components and their mechanical deformability offers wearability. In this regard, key issues like the selection of functional materials, the choice of an appropriate sediment ink, its effective formulation, and the selection of appropriate printing technology provide a rational trajectory towards the fabrication of high-performance devices. Recently, MXene based screen printable inks have been gaining attention due to their unique mechanical, electronic, and rheological properties and their printed architectures have shown potential viability as charge storage components in flexible devices. Herein, we report the recent advancements in screen printable transition metal carbide and nitride (MXene) ink formulations and their challenges for flexible micro-supercapacitor (MSC) applications. This review work focuses on (i) efficient MXene based ink formulation strategies for screen-printing applications, (ii) the strategies to improve the substrate and ink interactions, (iii) methods to address the issues like the oxidative and deformation stability of screen printed MXene MSCs, and (iv) challenges in the integration of these MXene MSCs as energy storage components in device architectures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据