4.6 Article

Operando HERFD-XANES and surface sensitive Δμ analyses identify the structural evolution of copper(II) phthalocyanine for electroreduction of CO2

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 64, 期 -, 页码 1-7

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2021.04.049

关键词

Operando HERFD-XANES; Delta mu analysis; Structural evolution; Copper(II) phthalocyanine; Electrochemical CO2 reduction reaction

资金

  1. National Natural Science Foun-dation of China [U1732267]

向作者/读者索取更多资源

Quantitatively understanding the impact of atomic-level catalyst structural changes on the reactivity of the electrochemical CO2 reduction reaction is challenging. Operando high-energy resolution fluorescence-detected X-ray absorption spectroscopy was used in this study to identify the dynamic structural transformation of active sites of a model copper(II) phthalocyanine catalyst. The approach developed is a novel and powerful technique for elucidating complex catalytic mechanisms and may contribute to the rational design of highly effective catalysts.
The quantitative understanding of how atomic-level catalyst structural changes affect the reactivity of the electrochemical CO2 reduction reaction is challenging. Due to the complexity of catalytic systems, conventional in situ X-ray spectroscopy plays a limited role in tracing the underlying dynamic structural changes in catalysts active sites. Herein, operando high-energy resolution fluorescence-detected X-ray absorption spectroscopy was used to precisely identify the dynamic structural transformation of well-defined active sites of a representative model copper(II) phthalocyanine catalyst which is of guiding significance in studying single-atom catalysis system. Comprehensive X-ray spectroscopy analyses, including surface sensitive Delta mu spectra which isolates the surface changes by subtracting the disturb of bulk base and X-ray absorption near-edge structure spectroscopy simulation, were used to discover that Cu species aggregated with increasing applied potential, which is responsible for the observed evolution of C2H4. The approach developed in this work, characterizing the active-site geometry and dynamic structural change, is a novel and powerful technique to elucidate complex catalytic mechanisms and is expected to contribute to the rational design of highly effective catalysts. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据