4.7 Article

Decentralized Coordination and Stabilization of Hybrid Energy Storage Systems in DC Microgrids

期刊

IEEE TRANSACTIONS ON SMART GRID
卷 13, 期 3, 页码 1751-1761

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2022.3143111

关键词

Microgrids; Batteries; Stability analysis; Transient analysis; Voltage control; Power system stability; Damping; Hybrid energy storage system; pulsed power load; constant power load; stability; decentralized control; model predictive control

资金

  1. StandUP for Energy, Sweden
  2. Shanghai Rising-Star program [20QA1404000, TSG-01135-2021]

向作者/读者索取更多资源

In this paper, a composite model predictive control based decentralized dynamic power sharing strategy is proposed for hybrid energy storage systems (HESS) in DC microgrids. The proposed approach ensures optimal power allocation for different storage units and addresses the issue of constant power load instability.
Hybrid energy storage system (HESS) is an attractive solution to compensate power balance issues caused by intermittent renewable generations and pulsed power load in DC microgrids. The purpose of HESS is to ensure optimal usage of heterogeneous storage systems with different characteristics. In this context, power allocation for different energy storage units is a major concern. At the same time, the wide integration of power electronic converters in DC microgrids would possibly cause the constant power load instability issue. This paper proposes a composite model predictive control based decentralized dynamic power sharing strategy for HESS. First, a composite model predictive controller (MPC) is proposed for a system with a single ESS and constant power loads (CPLs). It consists of a baseline MPC for optimized transient performance and a sliding mode observer to estimate system disturbances. Then, a coordinated scheme is developed for HESS by using the proposed composite MPC with a virtual resistance droop controller for the battery system and with a virtual capacitance droop controller for the supercapacitor (SC) system. With the proposed scheme, the battery only supplies smooth power at steady state, while the SC compensates all the fast fluctuations. The proposed scheme achieves a decentralized dynamic power sharing and optimized transient performance under large variation of sources and loads. The proposed approach is verified by simulations and experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据