4.7 Article

Establishing a Reference Baseline for Midday Stem Water Potential in Olive and Its Use for Plant-Based Irrigation Management

期刊

FRONTIERS IN PLANT SCIENCE
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.791711

关键词

deficit irrigation; Olea europaea; stem water potential; vapor pressure deficit; baseline

向作者/读者索取更多资源

Midday stem water potential is being widely adopted for plant-based irrigation management in woody perennial crops, with a baseline SWP used to account for the effects of air vapor pressure deficit. Research has shown that the baseline SWP for olives is similar to other crops such as Prunus, and may indicate convergent adaptations to high water availability across species. This information can help improve plant-based irrigation management practices.
Midday stem water potential (SWP) is rapidly becoming adopted as a standard tool for plant-based irrigation management in many woody perennial crops. A reference or baseline SWP has been used in some crops (almond, prune, grape, and walnut) to account for the climatic influence of air vapor pressure deficit (VPD) on SWP under non-limiting soil moisture conditions. The baseline can be determined empirically for field trees maintained under such non-limiting conditions, but such conditions are difficult to achieve for an entire season. We present the results of an alternative survey-based approach, using a large set of SWP and VPD data collected over multiple years, from irrigation experiments in olive orchards located in multiple countries [Spain, United States (California), Italy, and Argentina]. The relation of SWP to midday VPD across the entire data set was consistent with an upper limit SWP which declined with VPD, with the upper limit being similar to that found in Prunus. A best fit linear regression estimate for this upper limit (baseline) was found by selecting the maximum R-2 and minimum probability for various upper fractions of the SWP/VPD relation. In addition to being surprisingly similar to the Prunus baseline, the olive baseline was also similar (within 0.1 MPa) to a recently published mechanistic olive soil-plant-atmosphere-continuum (SPAC) model for super high density orchard systems. Despite similarities in the baseline, the overall physiological range of SWP exhibited by olive extends to about -8 MPa, compared to about -4 MPa for economically producing almond. This may indicate that, despite species differences in physiological responses to low water availability (drought), there may be convergent adaptations/acclimations across species to high levels of water availability. Similar to its use in other crops, the olive baseline will enable more accurate and reproducible plant-based irrigation management for both full and deficit irrigation practices, and we present tentative SWP guidelines for this purpose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据