4.7 Article

Identification and Validation of Stable Quantitative Trait Loci for SDS-Sedimentation Volume in Common Wheat (Triticum aestivum L.)

期刊

FRONTIERS IN PLANT SCIENCE
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2021.747775

关键词

SDS-sedimentation volume; major QTL; wheat; quality; mapping

向作者/读者索取更多资源

In this study, 15 quantitative trait loci (QTL) for sodium dodecyl sulfate (SDS)-sedimentation volume (SSV) were identified, with the most significant QTL located on chromosome 1A explaining 39.67% of the phenotypic variance. By comparing SSVs of different recombinants, it was found that the combination of two favorable loci had the highest SSV, indicating an additive effect of these loci. This research provides valuable insights into the genetic basis of SSV and suggests a potential target for wheat breeding programs, QSsv.cau-1A.1.1.
Sodium dodecyl sulfate-sedimentation volume is an important index to evaluate the gluten strength of common wheat and is closely related to baking quality. In this study, a total of 15 quantitative trait locus (QTL) for sodium dodecyl sulfate (SDS)-sedimentation volume (SSV) were identified by using a high-density genetic map including 2,474 single-nucleotide polymorphism (SNP) markers, which was constructed with a doubled haploid (DH) population derived from the cross between Non-gda3753 (ND3753) and Liangxing99 (LX99). Importantly, four environmentally stable QTLs were detected on chromosomes 1A, 2D, and 5D, respectively. Among them, the one with the largest effect was identified on chromosome 1A (designated as QSsv.cau-1A.1) explaining up to 39.67% of the phenotypic variance. Subsequently, QSsv.cau-1A.1 was dissected into two QTLs named as QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2 by saturating the genetic linkage map of the chromosome 1A. Interestedly, favorable alleles of these two loci were from different parents. Due to the favorable allele of QSsv.cau-1A.1.1 was from the high-value parents ND3753 and revealed higher genetic effect, which explained 25.07% of the phenotypic variation, mapping of this locus was conducted by using BC3F1 and BC3F2 populations. By comparing the CS reference sequence, the physical interval of QSsv.cau-1A.1.1 was delimited into 14.9 Mb, with 89 putative high-confidence annotated genes. SSVs of different recombinants between QSsv.cau-1A.1.1 and QSsv.cau-1A.1 detected from DH and BC3F2 populations showed that these two loci had an obvious additive effect, of which the combination of two favorable loci had the high SSV, whereas recombinants with unfavorable loci had the lowest. These results provide further insight into the genetic basis of SSV and QSsv.cau-1A.1.1 will be an ideal target for positional cloning and wheat breeding programs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据