4.6 Article

PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction

期刊

FRONTIERS IN MICROBIOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2021.725727

关键词

antimicrobial peptides; minimum inhibitory concentration; generative deep learning; activity prediction; variational autoencoder

资金

  1. Jerome and Isabella Karle Distinguished Scholar Fellowship by the Naval Research Laboratory, base funds of the Naval Research Laboratory [1V33]
  2. Defense Threat Reduction Agency [HDTRA1033536]

向作者/读者索取更多资源

The study introduces the PepVAE framework for designing novel AMPs using VAE and antimicrobial activity prediction models. By sampling from different regions of the learned latent space, new AMP sequences can be generated with minimal input parameters for controlled production of AMPs with predicted antimicrobial activity. This modular design framework shows promise for development of novel AMPs with experimental validation.
New methods for antimicrobial design are critical for combating pathogenic bacteria in the post-antibiotic era. Fortunately, competition within complex communities has led to the natural evolution of antimicrobial peptide (AMP) sequences that have promising bactericidal properties. Unfortunately, the identification, characterization, and production of AMPs can prove complex and time consuming. Here, we report a peptide generation framework, PepVAE, based around variational autoencoder (VAE) and antimicrobial activity prediction models for designing novel AMPs using only sequences and experimental minimum inhibitory concentration (MIC) data as input. Sampling from distinct regions of the learned latent space allows for controllable generation of new AMP sequences with minimal input parameters. Extensive analysis of the PepVAE-generated sequences paired with antimicrobial activity prediction models supports this modular design framework as a promising system for development of novel AMPs, demonstrating controlled production of AMPs with experimental validation of predicted antimicrobial activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据