4.6 Article

Interactions Between Marine Group II Archaea and Phytoplankton Revealed by Population Correlations in the Northern Coast of South China Sea

期刊

FRONTIERS IN MICROBIOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2021.785532

关键词

MGII archaea; phytoplankton; South China Sea; coastal surface water; network

向作者/读者索取更多资源

This study investigated the interactions between MGII archaea and phytoplankton in the northern coast of the South China Sea. The results showed distinct community patterns of MGII archaea in different sampling regions and seasons. Network analysis revealed positive correlations between MGII archaea and cyanobacteria, haptophytes, and stramenopiles. These findings contribute to our understanding of the multiple interactions between co-existing species in different oceanic regions.
Marine Group II (MGII) archaea (Poseidoniales) are the most abundant surface marine planktonic archaea and are widely distributed in both coastal and pelagic waters. The factors affecting their distribution and activity are poorly understood. MGII archaea have the metabolic potential to utilize algae-derived organic matter and are frequently observed in high abundance during or following phytoplankton blooms, suggesting that they are key players of the marine food web. In this study, we studied interactions between MGII archaea and the diverse taxa of phytoplankton in the northern coast of South China Sea. Non-metric multidimensional scaling and cluster analyses demonstrated distinct MGII community patterns in the Pearl River plume (PRP) and the open regions of the northern South China Sea (ONSCS), with MGIIb dominating the former and MGIIa and MGIIb showing remarkable variations in the latter for the same sampling season. Nevertheless, positive correlations (Pearson correlation: R > 0.8 and P < 0.01) in absolute abundances of ribosomal RNA (rRNA)-derived complementary DNA and rRNA genes from network analyses were found between MGII archaea and phytoplankton (cyanobacteria, haptophytes, and stramenopiles in both PRP and ONSCS) among different particle size fractions, indicating their intrinsic relationships under changing environmental conditions. The results of this study may shed light on the multiple interactions between co-existing species in the micro-niches of different oceanic regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据