4.6 Article

Molecular Characterization of Severe Acute Respiratory Syndrome Coronavirus 2 Isolates From Central Inner Sardinia

期刊

FRONTIERS IN MICROBIOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2021.827799

关键词

COVID-19; SARS-CoV-2; Sardinia-Italy; epidemiology; genome sequencing; phylogeny; pandemic (COVID-19); molecular characterization

向作者/读者索取更多资源

The study analyzed the genetic diversity and evolution of SARS-CoV-2 in a specific region in Italy. The results showed an increasing number of mutations and variability in spike and nucleocapsid proteins over time. This information is important for guiding public health interventions.
BackgroundThe SARS-CoV-2 pandemic stimulated an outstanding global sequencing effort, which allowed to monitor viral circulation and evolution. Nuoro province (Sardinia, Italy), characterized by a relatively isolated geographical location and a low population density, was severely hit and displayed a high incidence of infection. MethodsAmplicon approach Next Generation Sequencing and subsequent variant calling in 92 respiratory samples from SARS-CoV-2 infected patients involved in infection clusters from March 2020 to May 2021. ResultsPhylogenetic analysis displayed a coherent distribution of sequences in terms of lineage and temporal evolution of pandemic. Circulating lineage/clade characterization highlighted a growing diversity over time, with an increasingly growing number of mutations and variability of spike and nucleocapsid proteins, while viral RdRp appeared to be more conserved. A total of 384 different mutations were detected, of which 196 were missense and 147 synonymous ones. Mapping mutations along the viral genome showed an irregular distribution in key genes. S gene was the most mutated gene with missense and synonymous variants frequencies of 58.8 and 23.5%, respectively. Mutation rates were similar for the S and N genes with one mutation every similar to 788 nucleotides and every similar to 712 nucleotides, respectively. Nsp12 gene appeared to be more conserved, with one mutation every similar to 1,270 nucleotides. The frequency of variant Y144F in the spike protein deviated from global values with higher prevalence of this mutation in the island. ConclusionThe analysis of the 92 viral genome highlighted evolution over time and identified which mutations are more widespread than others. The high number of sequences also permits the identification of subclusters that are characterized by subtle differences, not only in terms of lineage, which may be used to reconstruct transmission clusters. The disclosure of viral genetic diversity and timely identification of new variants is a useful tool to guide public health intervention measures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据