4.8 Article

Regeneration of the larval sea star nervous system by wounding induced respecification to the Sox2 lineage

期刊

ELIFE
卷 11, 期 -, 页码 -

出版社

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.72983

关键词

Patiria miniata; sea star; regeneration; lineage conversion; specification; sox genes; Other

类别

资金

  1. National Science Foundation NSF [IOS 1557431]
  2. National Institute of General Medical Sciences [NIH 1R24OD023046]
  3. DSF Charitable Foundation

向作者/读者索取更多资源

The ability to restore lost body parts is a fascinating field of study, but there are still many unanswered questions regarding the origin and potential of regenerating cells, as well as the role of gene regulatory networks. In this study, new transgenic tools were developed to track cell populations in the regenerating larva of sea stars, and it was found that the larval serotonergic nervous system can regenerate following decapitation.
The ability to restore lost body parts following traumatic injury is a fascinating area of biology that challenges current understanding of the ontogeny of differentiation. The origin of new cells needed to regenerate lost tissue, and whether they are pluripotent or have de- or trans-differentiated, remains one of the most important open questions . Additionally, it is not known whether developmental gene regulatory networks are reused or whether regeneration specific networks are deployed. Echinoderms, including sea stars, have extensive ability for regeneration, however, the technologies for obtaining transgenic echinoderms are limited and tracking cells involved in regeneration, and thus identifying the cellular sources and potencies has proven challenging. In this study, we develop new transgenic tools to follow the fate of populations of cells in the regenerating larva of the sea star Patiria miniata. We show that the larval serotonergic nervous system can regenerate following decapitation. Using a BAC-transgenesis approach we show that expression of the pan ectodermal marker, sox2, is induced in previously sox2 minus cells , even when cell division is inhibited. sox2+ cells give rise to new sox4+ neural precursors that then proceed along an embryonic neurogenesis pathway to reform the anterior nervous systems. sox2+ cells contribute to only neural and ectoderm lineages, indicating that these progenitors maintain their normal, embryonic lineage restriction. This indicates that sea star larval regeneration uses a combination of existing lineage restricted stem cells, as well as respecification of cells into neural lineages, and at least partial reuse of developmental GRNs to regenerate their nervous system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据