4.6 Article

Ultrafast Spin-Charge Conversion at SnBi2Te4/Co Topological Insulator Interfaces Probed by Terahertz Emission Spectroscopy

期刊

ADVANCED OPTICAL MATERIALS
卷 10, 期 7, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202102061

关键词

spin-charge conversion; terahertz spectroscopy; topological insulators; topological surface states; ultrafast spintronics

资金

  1. Horizon 2020 FETPROAC Project [SKYTOP-824123]
  2. Horizon 2020 Framework Programme of the European Commission under FET-Open [863155]

向作者/读者索取更多资源

This study demonstrates sizable terahertz (THz) emission through a nanometric thick topological insulator (TI)/ferromagnetic junction. By employing terahertz emission time domain spectroscopy (TDS), the contribution of topological surface states (TSS) to spin-to-charge conversion (SCC) is investigated, highlighting the significance of this approach for studying interfacial spintronic properties.
Spin-to-charge conversion (SCC) involving topological surface states (TSS) is one of the most promising routes for highly efficient spintronic devices for terahertz (THz) emission. Here, the THz generation generally occurs mainly via SCC consisting in efficient dynamical spin injection into spin-locked TSS. In this work, sizable THz emission from a nanometric thick topological insulator (TI)/ferromagnetic junction-SnBi2Te4/Co-specifically designed to avoid bulk band crossing with the TSS at the Fermi level, unlike its parent material Bi2Te3 is demonstrated. THz emission time domain spectroscopy (TDS) is used to indicate the TSS contribution to the SCC by investigating the TI thickness and angular dependence of the THz emission. This work illustrates THz emission TDS as a powerful tool alongside angular resolved photoemission spectroscopy (ARPES) methods to investigate the interfacial spintronic properties of TI/ferromagnet bilayers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据