4.6 Article

Wireless Chemical Charging of a Metal-Ion Battery by Magnetic Particles

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 10, 期 1, 页码 259-266

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.1c06100

关键词

wireless charging; magnetic particles; energy conversion devices; hexacyanometallate cathode; insertion cathode

资金

  1. DST-SERB
  2. DST-WTI [DST/TMD-EWO/WTI/2K19/EWFH/2019/272]
  3. DST-HFC [DST/TMD/HFC/2K18/58]

向作者/读者索取更多资源

This study demonstrates an ultra-high-capacity metal-ion battery using a unique cathode design and acidic aqueous electrolyte, capable of reversibly reducing hexacyanometallate through wireless charging with magnetite particles. The structural flexibility of the magnetite particles leads to a high cumulative capacity battery, offering opportunities for fast and remote charging with minimal power losses.
The state-of-the-art battery performance is often limited by the cathode, and consequently, expanding the storage metrics often requires a heavy cathode. Since charge is stored within the bulk of the electrodes in most batteries, energy/power trade-off is one of their classical challenges, and alternative cell chemistries that avoid these drawbacks are highly sought after. We demonstrate an ultra-high-capacity metal-ion battery comprising an acidic aqueous electrolyte with suspended magnetite particles and a hexacyanometallate-based insertion cathode. During discharge, the hexacyanometallate is reversibly reduced, and its original redox state is restored during intermittent periods by wirelessly charging with magnetite particles. Recovery involves sacrificial surface redox of the Fe3+/Fe2+ couple in magnetite particles with the formation of water and re-oxidation of hexacyanometallate. The structural flexibility of the magnetite particles with respect to their oxidation states leads to a high cumulative capacity battery, which offers opportunities for fast and remote charging with minimal power losses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据