4.6 Article

Water Level Forecasting Using Spatiotemporal Attention-Based Long Short-Term Memory Network

期刊

WATER
卷 14, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/w14040612

关键词

deep learning; time series; flood forecasting; attention mechanism LSTM; water-level prediction

资金

  1. Ministry of Post, Telecommunication and Information Technology, Bangladesh [12]
  2. [2020-21]

向作者/读者索取更多资源

Bangladesh, located in the floodplains of the Ganges, Brahmaputra, and Meghna River delta, has not fully explored the potential of deep learning models in flood prediction. This study successfully utilized LSTM network and attention-based models to predict flood water levels in Bangladeshi rivers.
Bangladesh is in the floodplains of the Ganges, Brahmaputra, and Meghna River delta, crisscrossed by an intricate web of rivers. Although the country is highly prone to flooding, the use of state-of-the-art deep learning models in predicting river water levels to aid flood forecasting is underexplored. Deep learning and attention-based models have shown high potential for accurately forecasting floods over space and time. The present study aims to develop a long short-term memory (LSTM) network and its attention-based architectures to predict flood water levels in the rivers of Bangladesh. The models developed in this study incorporated gauge-based water level data over 7 days for flood prediction at Dhaka and Sylhet stations. This study developed five models: artificial neural network (ANN), LSTM, spatial attention LSTM (SALSTM), temporal attention LSTM (TALSTM), and spatiotemporal attention LSTM (STALSTM). The multiple imputation by chained equations (MICE) method was applied to address missing data in the time series analysis. The results showed that the use of both spatial and temporal attention together increases the predictive performance of the LSTM model, which outperforms other attention-based LSTM models. The STALSTM-based flood forecasting system, developed in this study, could inform flood management plans to accurately predict floods in Bangladesh and elsewhere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据