4.7 Article

Analysis on Land-Use Change and Its Driving Mechanism in Xilingol, China, during 2000-2020 Using the Google Earth Engine

期刊

REMOTE SENSING
卷 13, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/rs13245134

关键词

spatial pattern; dynamic change; driving factor; time-series stability; random forest; statistical modeling

资金

  1. National Natural Science Foundation of China [41977421, 42130505]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA19040301, XDA20010202, XDA23100200]

向作者/读者索取更多资源

The study utilized Google Earth Engine and Landsat satellite images to analyze the land-use changes in Xilingol over the past 20 years using the random forest algorithm. Results showed an increase in vegetation area and expansion of built-up land, with climate and economic factors identified as main drivers of these changes.
Large-scale, long time-series, and high-precision land-use mapping is the basis for assessing the evolution and sustainability of ecosystems in Xilingol, the Inner Mongolia Autonomous Region, China. Based on Google Earth Engine (GEE) and Landsat satellite remote-sensing images, the random forest (RF) classification algorithm was applied to create a yearly land-use/land-cover change (LULC) dataset in Xilingol during the past 20 years (2000-2020) and to examine the spatiotemporal characteristics, dynamic changes, and driving mechanisms of LULC using principal component analysis and multiple linear stepwise regression methods. The main findings are summarized as follows. (1) The RF classification algorithm supported by the GEE platform enables fast and accurate acquisition of the LULC dataset, and the overall accuracy is 0.88 +/- 0.01. (2) The ecological condition across Xilingol has improved significantly in the last 20 years (2000-2020), and the area of vegetation (grassland and woodland) has increased. Specifically, the area of high-coverage grass and woodland increases (+13.26%, +1.19%), while the area of water and moderate- and low-coverage grass decreases (-15.96%, -7.23%, and -3.27%). Cropland increases first and then decreases (-34.85%) and is mainly distributed in the southeast. The area of deserted land decreases in the south and increases in the center and north, but the total area still decreases (-13.74%). The built-up land expands rapidly (+108.45%). (3) In addition, our results suggest that regional socioeconomic development factors are the primary causes of changes in built-up land, and climate-related factors are the primary causes of water changes, but the correlations between other land-use types and relevant factors are not significant (cropland and grassland). We conclude that the GEE+RF method is capable of automated, long time-series, and high-accuracy land-use mapping, and further changes in climatic, environmental, and socioeconomic development factors, i.e., climate warming and rotational grazing, might have significant implications on regional land surface morphology and landscape dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据