4.7 Article

The Geological History of the Chang'e-5 Sample Return Region

期刊

REMOTE SENSING
卷 13, 期 22, 页码 -

出版社

MDPI
DOI: 10.3390/rs13224679

关键词

Moon; CE-5; geological features; volcanism; tectonism

资金

  1. B-type Strategic Priority Program of the Chinese Academy of Sciences [XDB41000000]
  2. National Natural Science Foundation of China [42130110, 41571388]
  3. Key projects of national basic work of science and technology [2015FY210500]

向作者/读者索取更多资源

Researchers analyzed the topographic characteristics, mineral composition, and chronology of the landing site region of Chang'e-5 through satellite data, revealing a history of multi-stage magmatic activities forming multiple mare units with different chemical and mineral compositions.
Chang'e-5 (CE-5), China's first sample-return mission, has successfully landed in Oceanus Procellarum near Mons Rumker. It is important to have a detailed study of the geological evolution of the CE-5 sample return region. This work aims to study the geological background, topography, geomorphology, major chemical composition, mineralogy, and chronology of the landing site region. First, we used the map of topography obtained by the Kaguya TC merged Digital Terrain Model (DTM) to analyze the topographic characteristics. Then, we used the Kaguya Multiband Imager (MI) reflectance data to derive FeO and TiO2 abundance and the hyperspectral data of the Moon Mineralogy Mapper (M-3) onboard the Chandrayaan-1 spacecraft to study the mineralogy of the landing site region. Later, we defined and dated the geological units of the landing area using the crater size-frequency distribution (CSFD) method. Finally, we conducted a detailed analysis of the volcanism and tectonism that occurred in the CE-5 landing area. The study region has experienced multi-stage magmatic activities (~3.36 Ga to ~1.22 Ga) and formed multiple mare units with different chemical and mineral compositions. The relationship between the wrinkle ridges cut by small impact craters suggests that the U7/Em5 has experienced Copernican aged tectonism recently ~320 Ma. The U7/Em5 unit where the Chang'e-5 sample return mission landed is dominantly composed of mature pyroxene and the basalts are mainly high-iron and mid-titanium basalts. Additionally, the analysis of pure basalt in the U7/Em5 suggests that the samples returned by the CE-5 mission may contain the ejecta and ray materials of young craters, including sharp B, Harding, Copernicus, and Aristarchus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据